Skip to main content
Log in

Aerodynamic characteristics of an acoustically modulated gas jet

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

It has been established from a theoretical and experimental analysis of aerodynamic characteristics of acoustically modulated gas jets that, in the subcritical flow regime, acoustic vibrations affect the turbulent jet divergence at the exit from the jet–acoustic generator. It has been proved that the acoustic action on the core of a turbulent jet results in the hysteresis in the jet–acoustic system. This effect has been substantiated theoretically and the influence on the density of the reflecting surface on the hysteresis loop width has been confirmed experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. A. S. Ginevskii, V. V. Vlasov, and R. K. Karavosov, Acoustic Control of Turbulent Jets (Fizmatlit, Moscow, 2001).

    Google Scholar 

  2. L. A. Zalmanzon, Theory of Pneumonic Devices (Nauka, Moscow, 1969).

    Google Scholar 

  3. Shih-I Pai, Fluid Dynamics of Jets (Van Nostrand, New York, 1954; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  4. V. N. Dmitriev and V. G. Gradetskii, Fundamentals of Pneumoautomatic (Mashinostroenie, Moscow, 1973).

    Google Scholar 

  5. G. N. Abramovich, Applied Gas Dynamics (Nauka, Msocow, 1969).

    Google Scholar 

  6. H. Schlichting, The Origin of Turbulence, in Boundary-Layer Theory (McGraw-Hill, New York, 1955; Inostrannaya Literatura, 1962).

    Google Scholar 

  7. F. W. Chambers and V. W. Goldschmidt, AIAA Pap., No. 57, 1 (1981).

    Google Scholar 

  8. D. M. Mordasov, Vestn. Tambov. Gos. Tekh. Univ. 7, 283 (2001).

    Google Scholar 

  9. A. S. Piminov and V. M. Baryshnikov, USSR Inventor’s Certificate No. 821777 (April 15, 1981), Byull. Izobret., No.14.

    Google Scholar 

  10. V. F. Davidenko and S. M. Epishin, RF Patent No. 2032183 (March 27, 1995), Byull. Izobret., No.10.

    Google Scholar 

  11. D. M. Mordasov, M. M. Mordasov, and N. A. Bulgakov, RF Patent No. 2188395 (August, 27 2002), Byull. Izobret., No.24.

    Google Scholar 

  12. D. M. Mordasov, M. M. Mordasov, and S. V. Mishchenko, Datchiki Sist., No. 1, 37 (2002).

    Google Scholar 

  13. V. K. Savitskii, in Proceedings of the 15th All-Union Meeting on Pneumoautomatics, L’vov, 1985 (Izd IPU, Moscow, 1985), Chap. 2, pp. 97–98.

    Google Scholar 

  14. T. Farmer, Structural Studies of Liquids and Glasses Using Aerodynamic Levitation (Springer, Switzerland, 2015). doi 10.1007/978-3-319-06575-5_1

    Book  Google Scholar 

  15. J. A. Balabel, Emirates J. Eng. Res. 12 (3), 35 (2007).

    Google Scholar 

  16. A. D. Lapin, Acoustic Long Lines and Waveguides (Mosk. Inst. Radio Elektron. Avtomat., Moscow, 1979).

    Google Scholar 

  17. B. M. Yavorskii and A. A. Detlaf, A Handbook of Physics (Nauka, Moscow, 1974).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Mordasov.

Additional information

Original Russian Text © D.M. Mordasov, M.M. Mordasov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 3, pp. 468–470.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mordasov, D.M., Mordasov, M.M. Aerodynamic characteristics of an acoustically modulated gas jet. Tech. Phys. 62, 490–492 (2017). https://doi.org/10.1134/S1063784217030148

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217030148

Navigation