Skip to main content
Log in

Activation energy of ion motion in the nanodimensional lattice of LaF3 superionic conductor

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Quantum chemistry calculations of the intracrystalline potential relief in the nanolattice of LaF3 superionic crystal that contains 1200 ions and measures 3.5 × 2.0 × 2.2 nm along the x, y, and z axis, respectively, have been performed. Using the MOPAC 2012 program package, the potential relief profile has been simulated in the central part of the nanolattice for an elementary act of disordering in the lowest melting sublattice of F1 ions. It has been found that the height E m of barriers that prevent the motion of F1 in the dielectric phase of LaF3 crystal equals 0.37 eV and decreases to 0.15 eV in the superionic state. In addition, activation energy E a of F1 sublattice disordering in the dielectric and superionic states is equal to 0.16 and 0.04 eV, respectively. The profiles of the potential relief calculated on the xy and xz faces of the LaF3 3D nanolattice for the case when an F1 ion moves along the x crystal axis in the dielectric state are presented. The corresponding energy barriers are 1.5–2.0 times lower than those at the center of the LaF3 nanlattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yu. Ya. Gurevich and Yu. I. Kharkats, Superionic Conductors (Nauka, Moscow, 1992).

    Google Scholar 

  2. T. Tarahashi and K. Kuwabara, Physics and Chemistry of Solid Electrolytes, Ed. by I. Yokota (Niigata Univ., Niigata, 1990), pp. 40–93.

  3. V. S. Bagotskii and A. M. Skundin, Chemical Source of Current (Energiya, Moscow, 1981).

    Google Scholar 

  4. A. A. Potanin, Ross. Khim. Zh. 45 (5–6), 58 (2001).

    Google Scholar 

  5. W. Moritz, V. I. Filippov, A. A. Vasiliev, et al., in Proceedings of the 12th European Symposium on Fluorine Chemistry, Berlin, 1998, pp. 1–70.

    Google Scholar 

  6. A. A. Nefedov, S. Sbitnev, and S. Fanchenko, Tech. Phys. Lett. 24, 554 (1998).

    Article  ADS  Google Scholar 

  7. A. F. Privalov, H.-M. Vieth, and I. V. Murin, J. Phys. Chem. Solids 50, 395 (1989).

    Article  ADS  Google Scholar 

  8. V. F. Krivorotov, A. A. Fridman, and E. V. Charnaya, Uzb. Fiz. Zh. 13 (2), 104 (2011).

    Google Scholar 

  9. V. F. Krivorotov, G. S. Nuzhdov, A. A. Fridman, et al., Elektrokhim. 49, 1285 (2013).

    Google Scholar 

  10. C. Tien, E. V. Charnaya, and A. B. Sherman, Phys. Solid State 46, 1627 (2004).

    Article  ADS  Google Scholar 

  11. M. El Omari, J. Sénegas, and J.-M. Réau, Solid State Ionics 107, 293 (1998).

    Article  Google Scholar 

  12. A. F. Privalov, O. Lips, and F. Fujara, J. Phys.: Condens. Matter 14, 4515 (2002).

    ADS  Google Scholar 

  13. A. Rhandour, J. M. Reau, S. F. Matar, et al., Mater. Res. Bull. 20, 1309 (1985).

    Article  Google Scholar 

  14. V. Trnovcova, L. S. Garashina, A. Skubla, et al., Solid State Ionics 157, 195 (2003).

    Article  Google Scholar 

  15. V. F. Krivorotov and G. S. Nuzhdov, Tech. Phys. 57, 1667 (2012).

    Article  Google Scholar 

  16. P. K. Khabibullaev, L. N. Fershtat, and A. E. Aliev, Dokl. Akad. Nauk SSSR 281, 320 (1985).

    Google Scholar 

  17. Coordination Chemistry of Rare-Earth Elements, Ed. by V. I. Spitsyn and L. I. Martynenko (Mosk. Gos. Univ., Moscow, 1979).

  18. V. S. Urusov, Theoretical Crystallochemistry (Mosk. Gos. Univ., Moscow, 1987).

    Google Scholar 

  19. Physics of Superionic Conductors, Ed. by M. B. Salamon (Springer, Berlin, 1979).

  20. Stewart Computational Chemistry MOPAC 2012. http://openmopac.net.

  21. V. F. Krivorotov, P. K. Khabibullaev, A. A. Fridman, et al., Neorg. Mater. 46, 1263 (2010).

    Google Scholar 

  22. V. Krivorotov, Internal Motion and Cooperative Phenomena inSuperionic Trifluorides (Experiments, Models, Calculus) (LAMBERT, Saarbrucken, 2013).

    Google Scholar 

  23. V. F. Krivorotov, Tech. Phys 58, 704 (2013).

    Article  Google Scholar 

  24. J. Manning, Diffusion Kinetics for Atoms in Crystals (Van Nostrand, Princeton, 1968).

    Google Scholar 

  25. V. F. Krivorotov, P. K. Khabibullaev, A. A. Fridman, et al., Neorg. Mater. 46, 875 (2010).

    Google Scholar 

  26. V. F. Krivorotov, P. K. Khabibullaev, A. A. Fridman, et al., Neorg. Mater. 46, 1387 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Krivorotov.

Additional information

Original Russian Text © V.F. Krivorotov, S.Z. Mirzaev, G.S. Nuzhdov, 2017, published in Zhurnal Tekhnicheskoi Fiziki, 2017, Vol. 87, No. 3, pp. 360–366.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krivorotov, V.F., Mirzaev, S.Z. & Nuzhdov, G.S. Activation energy of ion motion in the nanodimensional lattice of LaF3 superionic conductor. Tech. Phys. 62, 384–389 (2017). https://doi.org/10.1134/S1063784217030112

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784217030112

Navigation