Skip to main content
Log in

Verification of the standard model of shear stress transport and its modified version that takes into account the streamline curvature and estimation of the applicability of the Menter combined boundary conditions in calculating the ultralow profile drag for an optimally configured cylinder–coaxial disk arrangement

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A modification of the popular model of shear stress transport aimed at calculating the separation flow of an incompressible viscous liquid is justified. The modification eliminates the nonphysical pumping of the vortex viscosity in the cores of large-scale vortices. It has been verified with regard to the influence of the streamline curvature on the vortex viscosity by introducing a reciprocal linear function of the turbulent Richardson number with the Isaev–Kharchenko–Usachov constant equal to 0.02.Verification is based on solving the test problem an axisymmetric steady flow about a disk–cylinder tandem with an optimally configured nose, which has an ultralow profile drag for a Reynolds number of 5 × 105. It has been shown that the Menter combined boundary conditions are valid if y + y of the wall does not exceed two.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Isaev, A. G. Sudakov, P. A. Baranov, A. E. Usachov, S. V. Strizhak, Ya. K. Lokhanskii, and S. V. Guvernyuk, Vestn. Yuzhno-Ural. Gos. Univ., Ser.: Mat. Model. Program. 17 [150(3)], 59 (2009).

    Google Scholar 

  2. I. A. Belov and S. A. Isaev, Modeling of Turbulent Flows. A Student Book (Balt. Gos. Tekh. Univ., St. Petersburg, 2001).

    Google Scholar 

  3. B. E. Launder and D. B. Spalding, Comput. Methods Appl. Mech. Eng. 3, 269 (1974).

    Article  ADS  Google Scholar 

  4. F. R. Menter, AIAA Pap. 2906, 1 (1993).

    Google Scholar 

  5. P. R. Spalart and S. R. Allmares, AIAA Pap. 92-0439 (1992).

    Google Scholar 

  6. F. R. Menter, M. Kuntz, and R. Langtry, in Turbulence, Heat and Mass Transfer 4, Ed. by K. Hajalic, Y. Nogano, and M. Tummers (Begell House, New York, 2003).

  7. M. Leschziner and U. Rodi, Teor. Osnovy Inzh. Raschetov 103, 299 (1981).

    Google Scholar 

  8. I. A. Belov, S. A. Isaev, and V. A. Korobkov, Problems and Methods for Calculation of Detached Flows of Incompressible Fluids (Sudostroenie, Leningrad, 1989).

    Google Scholar 

  9. Managing of Flows around Bodies with Vortical Cells in Application to Aircraft Vehicles of Integral Configuration (Numerical and Physical Modeling), Ed. by A. V. Ermishin and S. A. Isaev (Mosk. Gos. Univ., Moscow, 2003).

  10. A. Hellsten, AIAA Pap. 98-2554 (1998).

    Google Scholar 

  11. V. B. Kharchenko, “Numerical modeling of detached flows with eddy and jet generators based on multiblock computation technologies,” Candidate’s Dissertation (St. Petersburg, 2006).

    Google Scholar 

  12. S. A. Isaev, P. A. Baranov, and A. E. Usachov, Multiblock Computation Technologies in VP2/3 Code on Aerothermodynamics (Lambert Academic, Saarbryuken, 2013).

    Google Scholar 

  13. M. Shur, M. Strelets, A. Travin, and P. R. Spalart, AIAA J. 38, 784 (2000).

    Article  ADS  Google Scholar 

  14. P. E. Smirnov and F. Menter, in Proceedings of the ASME Turbo Expo Conference, Berlin, 2008, No. GT2008-50480.

    Google Scholar 

  15. T. Esch and F. R. Menter, Turbulence, Heat and Mass Transfer 4, Ed. by K. Hanjalic, Y. Nogano, and M. Tummers (Begell House, New York, 2003).

  16. F. Menter, J. C. Ferreira, T. Esch, and B. Konno, in Proceedings of the International Gas Turbine Congress, Tokyo, 2003, IGTC2003-TS-059.

    Google Scholar 

  17. ANSYS FLUENT 14.0: User’s Guide.

  18. S. A. Isaev, A. N. Mikhalev, A. G. Sudakov, and A. E. Usachov, Tech. Phys. 52, 991 (2007).

    Article  Google Scholar 

  19. S. A. Isaev, Yu. M. Lipnitskii, A. N. Mikhalev, A. V. Panasenko, and A. E. Usachov, J. Eng. Phys. Thermophys. 84, 827 (2011).

    Article  Google Scholar 

  20. S. A. Isaev, P. A. Baranov, A. N. Mikhalev, and A. G. Sudakov, Tech. Phys. Lett. 40, 996 (2014).

    Article  ADS  Google Scholar 

  21. S. A. Isaev, Yu. M. Lipnitckii, A. N. Mikhalev, A. V. Panasenko, and P. A. Baranov, Tech. Phys. Lett. 39, 750 (2013).

    Article  ADS  Google Scholar 

  22. S. A. Isaev, P. A. Baranov, Yu. V. Zhukova, A. E. Usachov, and V. B. Kharchenko, J. Eng. Phys. Thermophys. 87, 1002 (2014).

    Article  Google Scholar 

  23. S. A. Isaev, P. A. Baranov, A. E. Usachov, Yu. V. Zhukova, A. A. Vysotskaya, and D. A. Malyshkin, Inzh.-Fiz. Zh. 88, 872 (2015).

    Google Scholar 

  24. S. A. Isaev, E. A. Kalinin, A. A. Tereshkin, and A. E. Usachov, Tech. Phys. Lett. 41, 298 (2015).

    Article  ADS  Google Scholar 

  25. S. A. Isaev, J.-J. Miau, A. G. Sudakov, and A. E. Usachov, Tech. Phys. Lett. 41, 737 (2015).

    Article  ADS  Google Scholar 

  26. A. Roshko and K. Koenig, in Aerodynamic Drag Mechanisms of Bluff Bodies and Road Vehicles, Ed. by G. Sovran, T. Morel, and W. T. Mason (Plenum, New York, 1978), pp. 253–286.

  27. A. Roshko and K. Koenig, J. Fluid Mech. 156, 167 (1985).

    Article  ADS  Google Scholar 

  28. V. K. Bobyshev and S. A. Isaev, Processes of Turbulaent Transfer (Inst. Teplo-Masso-Obmena Akad. Nauk BSSR, Minsk, 1988), pp. 39–48.

    Google Scholar 

  29. I. A. Belov, I. M. Dement’ev, S. A. Isaev, and A. Yu.Mitin, Preprint No. 1353, FTI im. A.F. Ioffe (Ioffe Physical-Technical Institute, 1989).

    Google Scholar 

  30. V. K. Bobyshev and S. A. Isaev, J. Eng. Phys. 58, 556 (1990).

    Article  Google Scholar 

  31. S. A. Isaev, J. Eng. Termophys. 68, 16 (1995).

    Google Scholar 

  32. S. A. Isaev, V. M. Suprun, and O. A. Shul’zhenko, J. Eng. Phys. 60, 342 (1991).

    Article  Google Scholar 

  33. V. K. Bobyshev and S. A. Isaev, J. Eng. Phys. Thermophys. 71, 600 (1998).

    Google Scholar 

  34. J. H. Ferziger and M. Peric, Computational Methods for Fluid Dynamics (Heidelberg, Berlin, 1999).

    Book  MATH  Google Scholar 

  35. J. P. Van Doormaal and G. D. Raithby, Numer. Heat Transfer. 7 (2), 147 (1984).

    Article  ADS  Google Scholar 

  36. B. P. Leonard, Comp. Methods Appl. Mech. Eng. 19, 59 (1979).

    Article  ADS  Google Scholar 

  37. B. Van Leer, J. Comput. Phys. 32, 101 (1979).

    Article  ADS  Google Scholar 

  38. S. M. Rhie and W. L. Chow, Aerokosm. Tekh. 2 (7), 33 (1984).

    Google Scholar 

  39. A. A. Gavrilov, Candidate’s Dissertation in Speciality No. 05.13.18 (Inst. Teplofiz. im. S.S. Kutateladze SO RAN, Novosibirsk, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Isaev.

Additional information

Original Russian Text © S.A. Isaev, P.A. Baranov, A.G. Sudakov, I.A. Popov, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 8, pp. 32–41.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isaev, S.A., Baranov, P.A., Sudakov, A.G. et al. Verification of the standard model of shear stress transport and its modified version that takes into account the streamline curvature and estimation of the applicability of the Menter combined boundary conditions in calculating the ultralow profile drag for an optimally configured cylinder–coaxial disk arrangement. Tech. Phys. 61, 1152–1161 (2016). https://doi.org/10.1134/S1063784216080120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216080120

Navigation