Skip to main content
Log in

Threshold intensity and coefficient of raman scattering amplification in a high-Q bilayer microresonator during the formation of internal and external submicron photonic jets: A photonic nanojet in the near field

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Using quantum and semiclassical approaches, the energy excitation threshold for induced Raman scattering is estimated and a relationship between the excitation threshold and the concentration of optically active molecules in a bilayer microresonator is established. Estimates are made during the formation of specially configured optical fields: internal and external photonic nanojets. Based on the amount of stored energy per mode and the value of the threshold intensity, an additional generalized selection rule for whispering gallery modes is suggested. It is shown that the bilayer microresonator can focus incident radiation (laser pumping) into a submicron focal volume at a low threshold intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Li, Z. Chen, A. Taflove, and V. Backman, Opt. Express 13, 526 (2005).

    Article  ADS  Google Scholar 

  2. D. Gerard, J. Wenger, A. Devilez, D. Gachet, B. Stout, N. Bonod, E. Popov, and H. Rigneault, Opt. Express 16, 15297 (2008).

    Article  ADS  Google Scholar 

  3. Yu. E. Geints, A. A. Zemlyanov, and E. K. Chistyakova, Opt. Atmos. Okeana 10, 289 (1997).

    Google Scholar 

  4. A. E. Fomin, M. L. Gorodetsky, I. S. Grudinin, and V. S. Ilchenko, J. Opt. Soc. Am. 22, 459 (2005).

    Article  ADS  Google Scholar 

  5. H.-B. Lin and A. J. Campillo, Opt. Lett. 20, 1589 (1995).

    Article  ADS  Google Scholar 

  6. Optical Particles Sizing: Theory and Practice, Ed. by G. Gouesbet and G. Grehau (Plenum, New York, 1988).

  7. Optical Effects Associated with Small Particles, Ed. by P. W. Barber and R. K. Chang (World Sci., Singapore, 1988).

  8. A. A. Zemlyanov and Y. E. Geints, J. Opt. Soc. Am. B 20, 2492 (2003).

    Article  ADS  Google Scholar 

  9. Yu. E. Geints and A. A. Zemlyanov, Opt. Atmos. Okeana 10, 500 (1997).

    Google Scholar 

  10. D. C. Cantrell, J. Opt. Soc. Am. B 8, 2181 (1991).

    Article  ADS  Google Scholar 

  11. J. Heyder and J. Gebhart, Appl. Opt. 18, 705 (1979).

    Article  ADS  Google Scholar 

  12. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, Opt. Atmos. Okeana 23, 666 (2010).

    Google Scholar 

  13. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, J. Opt. Soc. Am. B 29, 758 (2012).

    Article  ADS  Google Scholar 

  14. Y. E. Geints, A. A. Zemlyanov, and E. K. Panina, J. Opt. Soc. Am. B 28, 1825 (2011).

    Article  ADS  Google Scholar 

  15. A. V. Itagi and W. A. Challener, J. Opt. Soc. Am. A 22, 2847 (2005).

    Article  ADS  Google Scholar 

  16. P. Ferrand, J. Wenger, A. Devilez, M. Pianta, B. Stout, N. Bonod, E. Popov, and H. Rigneault, Opt. Express 16, 6930 (2008).

    Article  ADS  Google Scholar 

  17. L. G. Astaf’eva and G. P. Ledneva, Opt. Spectrosc. 106, 268 (2009).

    Article  ADS  Google Scholar 

  18. M. V. Jouravlev and G. Kurizki, “Theory of Raman amplification in microspheres,” Optical Processes in Microparticles and Nanostructures, Ed by A. Serpenguzel and A. W. Poon, Advanced Series in Applied Physics (World Sci., New Jersey, 2012), Vol. 6, pp. 137–150.

    Google Scholar 

  19. G. Kurizki, A. G. Kofman, A. Kozhekin, and G. Harel, New J. Phys., No. 2, 28.1 (2000).

    Article  ADS  Google Scholar 

  20. N. M. Kroll, “Quantum theory of radiation,” Quantum Optics and Electronics, Ed. by C. de Witt, A. Blandin, and C. Cohen-Tannoudji (Gordon and Breach, New York, 1965).

    Google Scholar 

  21. Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984)

    Google Scholar 

  22. L. G. Astaf’eva and G. P. Ledneva, Opt. Spectrosc. 108, 811 (2010).

    Article  ADS  Google Scholar 

  23. V. B. Braginskii and V. S. Il’chenko, Sov. Phys. Dokl. 32, 306 (1987).

    ADS  Google Scholar 

  24. Bei-Bei Li, Yun-Feng Xiao, Meng-Yuan Yan, W. R. Clements, and Qihuang Gong, Opt. Lett. 38, 1802 (2013).

    Article  ADS  Google Scholar 

  25. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, Nature 415, 621 (2002).

    Article  ADS  Google Scholar 

  26. G. V. Belokopytov and A. V. Jouravlev, in Proceedings of the International Conference on Coherent and Nonlinear Optics (ICONO 2005), Novel Photonics Materials: Physics and Optical Diagnostics of Nanostructures, St Petersburg, 2005, Ed. by V. Dmitriev, V. Shalaev, V. Shuvalov, and N. Zheludev; Proc. SPIE 6258, 625 801 (2005).

  27. G. V. Belokopytov and A. V. Zhuravlev, Opt. Spectrosc. 100, 617 (2006).

    Article  ADS  Google Scholar 

  28. A. L. Aden and M. Kerker, J. Appl. Phys. 22, 1242 (1951).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Zhuravlev.

Additional information

Original Russian Text © M.V. Zhuravlev, N.W. Solis, P.Yu. Peretyagin, A.A. Okun’kova, R. Torrecillas, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 4, pp. 106–112.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuravlev, M.V., Solis, N.W., Peretyagin, P.Y. et al. Threshold intensity and coefficient of raman scattering amplification in a high-Q bilayer microresonator during the formation of internal and external submicron photonic jets: A photonic nanojet in the near field. Tech. Phys. 61, 584–590 (2016). https://doi.org/10.1134/S1063784216040277

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216040277

Keywords

Navigation