Skip to main content
Log in

Calculation of the effective thermal conductivity of powders formed by spherical particles in a gaseous atmosphere

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We describe a method for calculating the effective thermal conductivity of powders formed by spherical particles with a size exceeding 1 μm in a gaseous atmosphere in wide ranges of temperatures and pressures. We take into account the structural factor of the powder medium, adsorption of gas on the surface of solid spheres, the temperature dependences of the thermal conductivities of the powder components, and the formation of melt necks between the spheres after the attainment of the melting point. In the case of complete melting of the spheres, we propose a model for thermal conductivity of the melt with gas inclusions. The results of calculation of the effective thermal conductivity are in good agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Gusarov, T. Laoui, L. Froyen, and V. I. Titov, Int. J. Heat Mass Transf. 46, 1103 (2003).

    Article  Google Scholar 

  2. I. V. Shishkovskii, Laser Synthesis of Functional Mesostructures and Bulk Articles (Fizmatlit, Moscow, 2009).

    Google Scholar 

  3. S. F. Gnyusov and S. Yu. Tarasov, Surf. Coat. Technol. 232, 775 (2013).

    Article  Google Scholar 

  4. R. G. Deissler and J. S. Boegli, Trans. ASME 80, 1417 (1958).

    Google Scholar 

  5. D. L. Swift, Int. J. Heat Mass Transf. 9, 1061 (1966).

    Article  Google Scholar 

  6. A. V. Luikov, A. G. Shashkov, L. L. Vasiliev, and Yu. E. Fraiman, Int. J. Heat Mass Transf. 11, 117 (1968).

    Article  Google Scholar 

  7. G. R. Hadley, Int. J. Heat Mass Transf. 29, 909 (1986).

    Article  Google Scholar 

  8. D. R. Shonnard and S. Whitaker, Int. J. Heat Mass Transf. 32, 503 (1989).

    Article  Google Scholar 

  9. A. V. Gusarov and E. P. Kovalev, Phys. Rev. 80, 024 202 (2009).

    Article  Google Scholar 

  10. A. V. Gusarov and E. P. Kovalev, Fiz. Khim. Obrab. Mater., No. 1, 70 (2009).

    Google Scholar 

  11. D. A. G. Bruggeman, Ann. Phys. 24, 636 (1935).

    Article  Google Scholar 

  12. C. J. F. Bottcher, Theory of Electric Polarization (Elsevier, Houston, 1952), pp. 415–420.

    Google Scholar 

  13. R. Landauer, J. Appl. Phys. 23, 779 (1952).

    Article  ADS  Google Scholar 

  14. J. C. Maxwell, A Treatise on Electricity and Magnetism, 3rd ed. (Dover, New York, 1954), Chap. 9.

    MATH  Google Scholar 

  15. Bu-Xuan Wang, Le-Ping Zhou, and Xiao-Feng Peng, Int. J. Heat Mass Transf. 46, 2665 (2003).

    Article  Google Scholar 

  16. A. P. Karnaukhov, Adsorbsion. Texture of Dispersive and Porous Materials (Nauka, Novosibirsk, 1999).

    Google Scholar 

  17. I. S. Grigoriev and E. Z. Melikhov, Handbook of Physical Quantities (CRC, Boca Raton, 1997).

    Google Scholar 

  18. D. V. Sivukhin, Course of General Physics. Thermodynamics and Molecular Physics (Nauka, Moscow, 1979).

    Google Scholar 

  19. Kh. Kh. Kalazhokov, Z. Kh. Kalazhokov, and Kh. B. Khokonov, Tech. Phys. 48, 272 (2003).

    Article  Google Scholar 

  20. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquid, in Encyclopedia of Physics, Vol. 10: Structure of Liquids, Ed. by S. Fliigge (Springer, Berlin, 1960).

    Google Scholar 

  21. Ya. E. Geguzin, Physics of Sintering (Nauka, Moscow, 1967).

    Google Scholar 

  22. J. Wang, J. K. Carson, M. F. North, and D. J. Cleland, Int. J. Heat Mass Transf. 49, 3075 (2006).

    Article  Google Scholar 

  23. A. J. Slavin, F. A. Londry, and J. Harrison, Int. J. Heat Mass Transf. 43, 2059 (2000).

    Article  Google Scholar 

  24. A. V. Gusarov and E. P. Kovalev, Fiz. Khim. Obrab. Mater., No. 2, 66 (2009).

    Google Scholar 

  25. N. B. Vargaftik, A. P. Filippov, A. A. Tarzimanov, and E. E. Totskii, Handbook of Thermal Conductivity of Liquids and Gases (Energoatomizdat, Moscow, 1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Yalovets.

Additional information

Original Russian Text © T.S. Volchenko, A.P. Yalovets, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 3, pp. 8–19.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volchenko, T.S., Yalovets, A.P. Calculation of the effective thermal conductivity of powders formed by spherical particles in a gaseous atmosphere. Tech. Phys. 61, 324–336 (2016). https://doi.org/10.1134/S1063784216030245

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216030245

Keywords

Navigation