Skip to main content
Log in

Radiative gas dynamics of the Fire-II superorbital space vehicle

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The rates of convective and radiative heating of the Fire-II reentry vehicle are calculated, and the results are compared with experimental flight data. The computational model is based on solving a complete set of equations for (i) the radiative gas dynamics of a physically and chemically nonequilibrium viscous heatconducting gas and (ii) radiative transfer in 2D axisymmetric statement. The spectral optical parameters of high-temperature gases are calculated using ab initio quasi-classical and quantum-mechanical methods. The transfer of selective thermal radiation in terms of atomic lines is calculated using the line-by-line method on a specially generated computational grid that is nonuniform in radiation wavelength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. M. Belotserkovskii, L. M. Biberman, S. Ya. Bronin, A. N. Lagar’kov, and V. N. Fomin, Teplofiz. Vys. Temp. 7 3, 529 (1969).

    Google Scholar 

  2. D. L. Cauchon, Radiative Heating Results from the Fire II Flight Experiment at a Reentry Velocity of 11.4 km/s, NASA TM X-1402 (1967).

    Google Scholar 

  3. E. S. Cornette, Forebody Temperature and Calorimeter Heating Rates Measured During Project Fire-II Reentry at 11.35 km/s, NASA TM X-1305 (1966).

    Google Scholar 

  4. D. R. Olynick, W. D. Henline, L. H. Chambers, and G. V. Candler, AIAA Pap. 94-1955 (1994).

    Google Scholar 

  5. C. O. Johnston, B. R. Hollis, and K. Sutton, AIAA Pap. 2007-3908 (2007).

    Google Scholar 

  6. S. T. Surzhikov, Radiative Gasdynamic Problems of Re- Entry Space Vehicles. Multitemperature Models (Inst. Prikl. Mekh. RAN, Moscow, 2013).

    Google Scholar 

  7. J. S. Shang and S. T. Surzhikov, J. Spacecr. Rockets 48, 385 (2011).

    Article  ADS  Google Scholar 

  8. S. T. Surzhikov and J. S. Shang, J. Spacecr. Rockets 49, 875 (2012).

    Article  ADS  Google Scholar 

  9. S. T. Surzhikov, Optical Properties of Gases and Plasma (Bauman MSTU, Moscow, 2004).

    Google Scholar 

  10. I. P. Ginzburg, Friction and Heat Transfer in a Moving Gas Mixture (Izd. Leningr. Gos. Univ., Leningrad, 1975).

    Google Scholar 

  11. V. P. Agafonov, V. K. Vertushkin, A. A. Gladkov, and O. Yu. Polyanskii, Nonequillibrium Physocochemical Processes in Aerodynamics (NASA, Washington, 1976).

    Google Scholar 

  12. R. B. Bird, W. E. Stewart, and E. W. Lightfoot, Transport Phenomena, 2nd ed. (Wiley, New York, 2002).

    Google Scholar 

  13. R. C. Millikan and D. R. White, J. Chem. Phys. 39 12, 3209 (1963).

    Article  ADS  Google Scholar 

  14. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965).

    Google Scholar 

  15. C. Park, Nonequilibrium Hypersonic Aerothermodynamics (Wiley, New York, 1990).

    Google Scholar 

  16. C. E. Treanor and P. V. Marrone Phys. Fluids 5 9, 1022 (1962).

    Article  ADS  Google Scholar 

  17. G. N. Zalogin, P. N. Kozlov, L. A. Kuznetsova, S. A. Losev, V. N. Makarov, Yu. V. Romanenko, and S. T. Surzhikov, Tech. Phys. 46, 654 (2001).

    Article  Google Scholar 

  18. J. R. Edwards and M.-S. Liou, AIAA J. 36 9, 1610 (1998)

    Article  ADS  Google Scholar 

  19. S. T. Surzhikov, Khim. Fiz. 27 10, 63 (2008).

    Google Scholar 

  20. C. Park, J. Thermophys. Heat Transfer 7 3, 385 (1993).

    Article  ADS  Google Scholar 

  21. M. G. Dunn and S. W. Kang, Theoretical and Experimental Studies of Reentry Plasmas, NASA CR 2232 (1973).

    Google Scholar 

  22. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamical Properties of Individual Substances (Nauka, Moscow, 1978).

    Google Scholar 

  23. M. W. Chase, C. A. Davies, J. R. Downey, D. J. Fririp, R. A. McDonald, and A. N. Syverud, JANAF Thermochemical Tables, 3rd ed. (Am. Chem. Soc., Washington, 1985) [J. Phys. Chem. Ref. Data 14, Suppl. 1 (1985)].

    Google Scholar 

  24. Yu. Ralchenko, F.-C. Jou, D. E. Kelleher, A. E. Kramida, A. Musgrove, J. Reader, W. L. Wiese, and K. Olsen, NIST Atomic Spectra Database, Version 3.1.0 (NIST, Gaithersburg, 2006). http://physicsnistgov/ PhysRefData/ASD/index

    Google Scholar 

  25. I. I. Sobelman, Introduction to Theory of Atomic Spectra (Pergamon, Oxford, 1972).

    Google Scholar 

  26. D. R. Hartree, The Calculation of Atomic Structures (Wiley, New York, 1957).

    MATH  Google Scholar 

  27. V. I. Baranovskii, Quantum Mechanics and Quantum Chemistry (Akademiya, Moscow, 2008).

    Google Scholar 

  28. S. T. Surzhikov, AIAA Pap 97-2367 (1997).

    Google Scholar 

  29. S. T. Surzhikov, Thermal Radiation of Gases and Plasma (Bauman MSTU, Moscow, 2004).

    Google Scholar 

  30. A. Djadkin, A. Beloshitsky, M. Shuvalov, and S. Surzhikov, AIAA 2011–0453 (2011).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Surzhikov.

Additional information

Original Russian Text © S.T. Surzhikov, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 3, pp. 31–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Surzhikov, S.T. Radiative gas dynamics of the Fire-II superorbital space vehicle. Tech. Phys. 61, 349–359 (2016). https://doi.org/10.1134/S1063784216030208

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216030208

Keywords

Navigation