Skip to main content
Log in

Wireless monitoring of the biological object state at microwave frequencies: A review

  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Radio-frequency identification systems used for the remote diagnostics of diseases and contactless monitoring and assessment of human health are reviewed. The propagation of electromagnetic waves inside a biological medium and along interfaces between different media, as well as the problem of telemetry data acquisition from implanted systems or system on the human body surface using wireless sensors, is considered. Emphasis is on radio-frequency identification systems that use far-field electromagnetic radiation, since they are necessary in emergency situations to find injured people in hard-to-reach places and assess the state of emergency response workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Finkenzeller, RFID Handbook: Fundamentals and Applications in Contactless Smart Cards, Radio Frequency Identification, and Near-Field Communication, 3rd ed. (Wiley, 2010).

    Book  Google Scholar 

  2. J. C. Lin, Electromagnetic Fields in Biological Systems (CRC–Taylor & Francis, London–New York, 2012).

    Google Scholar 

  3. P. S. Hall and Y. Hao, Antennas and Propagation for Body-Centric Wireless Communications (Artech House, Norwood, 2012).

    Google Scholar 

  4. K. S. Nikita, Handbook of Biomedical Telemetry (Wiley, 2014).

    Book  Google Scholar 

  5. V. P. Yakubov, et al., Radio-Wave Tomography: Achievements and Perspectives (NTL, Tomsk, 2014).

    Google Scholar 

  6. E. Moradi, K. Koski, T. Bjorninen, L. Sydanheimo, J. M. Rabaey, J. M. Carmena, Y. Rahmat-Samii, and L. Ukkonen, IEEE Antennas Propag. Mag. 56, 271 (2014).

    Article  ADS  Google Scholar 

  7. C. Kittel, Introduction to Solid State Physics, 5th ed. (Wiley, New York, 1976).

    MATH  Google Scholar 

  8. P. A. Tural’chuk, O. G. Vendik, and I. B. Vendik, Tech. Phys. Lett. 41, 270 (2015).

    Article  ADS  Google Scholar 

  9. L. D. Gol’dshtein and N. V. Zernov, Electromagnetic Fields and Waves (Sovetskoe Radio, Moscow, 1971).

    Google Scholar 

  10. I. V. Vendik and O. G. Vendik, in Proceedings of the Conference on Electronics and Microwave Electronics, St. Petersburg, 2015, pp. 42–46.

  11. R. E. Collin, Field Theory of Guided Waves (McGraw-Hill, New York, 1960).

    MATH  Google Scholar 

  12. R. Paknys, IEEE Trans. Antennas Propag. 53, 898 (2005).

    Article  ADS  Google Scholar 

  13. V. A. Fok, Problems of Diffraction and Propagation of Electromagnetic Waves (Pergamon, Oxford, 1965).

    Google Scholar 

  14. G. A. Conway, W. G. Scanlon, S. L. Cotton, and M. J. Bentum, in Proceedings of the URSI International Symposium on Electromagnetic Theory, Berlin, 2010, pp. 332–333.

  15. S. Gabriel, R. W. Lau, and C. Gabriel, Phys. Med. Biol. 41, 2231 (1996).

    Article  Google Scholar 

  16. T. Mavridis, L. Petrillo, J. Sarrazin, et al., IEEE Trans. Antennas Propag. 62, 1372 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  17. V. V. Pleskachev, I. B. Vendik, and O. G. Vendik, in Proceedings of the Conference on Electronics and Microwave Electronics, St. Petersburg, 2015, pp. 202–206.

  18. AVIVO Mobile Patient Management (Corventis, 2009–2013). http://www.corventis.com/int/products-international/avivompm/how-it-works

  19. I. Libbus, Y. D. Manicka, and R. Fogoros, “Adherent cardiac monitor with advanced sensing capabilities,” U.S. Patent No. 8460189 (2013).

    Google Scholar 

  20. M. Borazio and V. K. Laerhoven, in Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium, Miami, 2012, pp. 71–80.

  21. E. Hoque, R. F. Dickerson, and J. A. Stankovic, Wireless Health (ACM, New York, 2010), pp. 44–53.

    Google Scholar 

  22. J. J. Liu, W. Xu, M. C. Huang, et al., in Proceedings of the IEEE International Conference on Pervasive Computing and Communications (PerCom), San Diego, 2013, pp. 207–215.

  23. S. Abbate, M. Avvenuti, P. Corsini, et al., Monitoring of Human Movements for Fall Detection and Activities Recognition in Elderly Care Using Wireless Sensor Network: A Survey (InTech, New York, 2010).

    Book  Google Scholar 

  24. C. Park, J. Liu, and P. H. Chou, “Information Processing in Sensor Networks,” Proceedings of the 4th International Symposium on Information Processing in Sensor Networks (IPSN-2005), Los Angeles, 2005, pp. 398–403.

  25. Y. Hayashi, L. Livshits, A. Caduff, et al., J. Phys. D: Appl. Phys. 36, 369 (2003).

    Article  ADS  Google Scholar 

  26. A. Caduff, M. S. Talary, A. Mueller, et al., Biosens. Bioelectron. 24, 2778 (2009).

    Article  Google Scholar 

  27. A. Caduff and Y. Feldman, “Method and device for measuring glucose,” US. Patent No. 7184810 (2007).

    Google Scholar 

  28. P. S. Pandian, K. Mohanavel, K. P. Safeer, et al., Med. Eng. Phys. 30, 466 (2008).

    Article  Google Scholar 

  29. J. S. Karlsson, U. Wiklund, L. Berglin, et al., in Proceedings of the 5th International Workshop on Wearable Micro and Nanosystems for Personalized Health, Valencia, 2008.

  30. Y. D. Lee and W. Y. Chung, Sens. Actuators B 140, 390 (2009).

    Article  Google Scholar 

  31. EnRhythm Pacemaker (Medtronic, 2015) http://www.medtronic.eu/your-health/bradycardia/device/ourpacemakers/enrhythm/index.htm

  32. J. F. Patrick, P. A. Busby, and P. J. Gibson, Trends Amplif. 10, 175 (2006).

    Article  Google Scholar 

  33. M. S. Humayun, J. D. Weiland, G. Y. Fujii, et al., Vision Res. 43, 2573 (2003).

    Article  Google Scholar 

  34. N. Bourbakis, G. Giakos, and A. Karargyris, in Proceedings of the IEEE International Conference on Imaging Systems and Techniques (IST), Beijing, China, 2010, pp. 1–6.

  35. A. Menciassi, M. Quirini, and P. Dario, Minimally Invasive Therapy Allied Technol. 16, 91 (2007).

    Article  Google Scholar 

  36. S. Rao, S. P. Pandojirao, and J. C. Chiao, Smart Nanosyst. Eng. Med. 1, 38 (2012).

    Google Scholar 

  37. H. Cao, S. Rao, S. J. Tang, et al., Gastrointest. Endosc. 77, 649 (2013).

    Article  ADS  Google Scholar 

  38. B. J. Mohammed, A. M. Abbosh, S. Mustafa, et al., IEEE Trans. Instrum. Meas. 63, 117 (2014).

    Article  Google Scholar 

  39. S. Zhu and R. Langley, IEEE Trans. Antennas Propag. 57, 926 (2009).

    Article  ADS  Google Scholar 

  40. T. F. Kennedy, P. W. Fink, A. W. Chu, N. J. Champagne, G. Y. Lin, and M. A. Khayat, IEEE Trans. Antennas Propag. 57, 910 (2009).

    Article  ADS  Google Scholar 

  41. L. Song, A. C. Myers, J. J. Adams, and Y. Zhu, “Stretchable and reversibly deformable radio frequency antennas based on silver nanowires,” ACS Appl. Mater. Interfaces, No. 6, 4248 (2014).

    Article  Google Scholar 

  42. A. Tsolis, W. G. Whittow, et al., Electronics 3, 314 (2014).

    Article  Google Scholar 

  43. R. Jung-Sim, C. Yong-Seung, L. Jae-Hee, T. Youndo, N. Sangwook, and J. K. Tae, IEEE Trans. Antennas Wireless Propag. Lett. 9, 803 (2010).

    Article  Google Scholar 

  44. L. Yang, A. Rida, R. Vyas, and M. M. Tentzeris, IEEE Trans. Microwave Theory Tech. 55, 2894 (2007).

    Article  ADS  Google Scholar 

  45. S. Agneessens and H. Rogier, IEEE Trans. Antennas Propag. 62, 2374 (2014).

    Article  ADS  Google Scholar 

  46. S. Bashir, Doctoral Thesis (Loughborough Univ., 2009).

    Google Scholar 

  47. A. Vallecchi, J. R. Luis, F. Capolino, and F. Flaviis, IEEE Trans. Antennas Propag. 60, 51 (2012).

    Article  ADS  Google Scholar 

  48. M. E. Cos, Y. Alvarez, R. Hadarig, and F. Las-Heras, Prog. Electromagn. Res. 106, 349 (2010).

    Article  Google Scholar 

  49. M. E. Cos and F. Las-Heras, Int. J. Antennas Propag. Article ID 353821 (2012).

    Google Scholar 

  50. A. C. Durgun, Doctoral Thesis (Arizona State Univ., 2013).

    Google Scholar 

  51. A. C. Durgun, C. A. Balanis, and C. R. Birtcher, in Proceedings of the IEEE International Symposium on Antennas and Propagation and USNC/URSI National Radio Science Meeting Washington, 2011, pp. 1844–1847.

  52. H. R. Raad, A. I. Abbosh, H. M. Al-Rizzo, and D. G. Rucker, IEEE Trans. Antennas Propag. 61, 524 (2013).

    Article  ADS  Google Scholar 

  53. J. M. Osepchuk and R. C. Petersen, “Historical review of RF exposure standards and the International Committee on Electromagnetic Safety (ICES),” Bioelectromagn. 24 (S6), S7 (2003).

    Article  Google Scholar 

  54. P. Turalchuk, I. Munina, M. Derkach, O. Vendik, and I. Vendik, IEEE Antennas Wireless Propag. Lett., PP (99), 1 (2015).

    Google Scholar 

  55. C. Liu, Y. X. Guo, and S. Xiao, IEEE Antennas Wireless Propag. Lett. 11, 1508 (2012).

    Article  ADS  Google Scholar 

  56. A. Kiourti and K. Nikita, IEEE Antennas Propag. Mag. 54, 210 (2012).

    Article  Google Scholar 

  57. Z. Duan, Y. X. Guo, M. Je, and D. L. Kwong, IEEE Trans. Antennas Propag. 62, 2430 (2014).

    Article  ADS  Google Scholar 

  58. T. F. Chien, C. M. Cheng, H. C. Yang, J. W. Jiang, and C. H. Luo, IEEE Antennas Wireless Propag. Lett. 9, 599 (2010).

    Article  ADS  Google Scholar 

  59. L. J. Xu, Y. X. Guo, and W. Wu, IEEE Antennas Wireless Propag. Lett. 11, 1564 (2012).

    Article  ADS  Google Scholar 

  60. F. Merli, L. Bolomey, J. F. Zürcher, G. Corradini, E. Meurville, and A. K. Skrivervik, IEEE Trans. Antennas Propag. 59, 3544 (2011).

    Article  ADS  Google Scholar 

  61. R. Lodato, V. Lopresto, R. Pinto, and G. Marrocco, IEEE Trans. Antennas Propag. 62, 5298 (2014).

    Article  ADS  Google Scholar 

  62. J. N. Mak and J. R. Wolpaw, IEEE Rev. Biomed. Eng. 2, 187 (2009).

    Article  Google Scholar 

  63. M. A. L. Nicolelis, Nature 409, 403 (2001).

    Article  ADS  Google Scholar 

  64. A. C. Koralek, X. Jin, Long J.D. 2nd, R. M. Costa, and J. M. Carmena, Nature 483, 331 (2012).

    Article  ADS  Google Scholar 

  65. V. N. Yashchenko, D. S. Kozlov, and I. B. Vendik, Tech. Phys. Lett. 41, 277 (2015).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. B. Vendik.

Additional information

Original Russian Text © I.B. Vendik, O.G. Vendik, D.S. Kozlov, I.V. Munina, V.V. Pleskachev, A.S. Rusakov, P.A. Tural’chuk, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 61, No. 1, pp. 3–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vendik, I.B., Vendik, O.G., Kozlov, D.S. et al. Wireless monitoring of the biological object state at microwave frequencies: A review. Tech. Phys. 61, 1–22 (2016). https://doi.org/10.1134/S1063784216010242

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216010242

Keywords

Navigation