Skip to main content
Log in

Electroelastic field of a sphere located in the vicinity of a plane piezoelectric surface

  • Theoretical and Mathematical Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The electric field generated by a scanning probe microscope is determined. Analytical expressions for the electroelastic field in a piezoelectric sample and the external electric field are derived for a spherical probe. It is demonstrated that the coupling of elastic and electrostatic fields in the piezoelectric material leads to energy redistribution between such fields. This circumstance causes variations in the normal component of the electric field strength at the interface and the capacitance of a probe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Kalinin and D. A. Bonnell, Phys. Rev. B 65 (12), 125 (2002).

    Article  Google Scholar 

  2. B. Wang and C. H. Woo, J. Appl. Phys. 94, 4053 (2003).

    Article  ADS  Google Scholar 

  3. A. V. Ankundinov and A. N. Titkov, Phys. Solid State 47, 1148 (2005).

    Article  ADS  Google Scholar 

  4. G. Rosenman and P. Urenski, Appl. Phys. Lett. 82, 103 (2003).

    Article  ADS  Google Scholar 

  5. M. Molotskii, J. Appl. Phys. 97, 014109 (2005).

    Article  ADS  Google Scholar 

  6. T. R. Volk, L. V. Simagina, R. V. Gainutdinov, et al., Phys. Solid State 53, 2468 (2011).

    Article  ADS  Google Scholar 

  7. T. R. Volk, R. V. Gainutdinov, Ya. V. Bodnarchuk, and L. I. Ivleva, JETP Lett. 97, 483 (2011).

    Article  ADS  Google Scholar 

  8. G. Van der Zwan and R. M. J. Mazo, Chem. Phys. 82, 3344 (1985).

    ADS  Google Scholar 

  9. W. R. Smythe, Static and Dynamic Electricity, 2nd ed. (McGraw-Hill, New York, 1950).

    MATH  Google Scholar 

  10. S. V. Kalinin, E. Karapetian, and M. Kachanov, Phys. Rev. B 70, 184101 (2004).

    Article  ADS  Google Scholar 

  11. E. Soergel, J. Phys. D: Appl. Phys. 44, 464003 (2011).

    Article  ADS  Google Scholar 

  12. A. S. Starkov and I. A. Starkov, in Proceedings of the International Symposium on Applications of Ferroelectrics, Aveiro, Portugal, 2012, pp. 1–4.

  13. D. V. Balagurov, A. V. Klyuchnik, and Yu. E. Lozovik, “Theory of scanning capacitance microscopy,” Phys. Solid State, 42, 361 (2000).

    Article  ADS  Google Scholar 

  14. J. E. Nye, Physical Properties of Crystals (Oxford Univ., London, 1957), p. 329.

    MATH  Google Scholar 

  15. F. Shang, M. Kuna, and T. Kitamura, Theor. Appl. Fract. Mech. 40, 237 (2003).

    Article  Google Scholar 

  16. A. S. Starkov, O. V. Pakhomov, and I. A. Starkov, Ferroelectrics 442, 10 (2013).

    Article  Google Scholar 

  17. P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, New York, 1953), p. 997.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Starkov.

Additional information

Original Russian Text © A.S. Starkov, O.V. Pakhomov, I.A. Starkov, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 61, No. 1, pp. 27–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Starkov, A.S., Pakhomov, O.V. & Starkov, I.A. Electroelastic field of a sphere located in the vicinity of a plane piezoelectric surface. Tech. Phys. 61, 23–27 (2016). https://doi.org/10.1134/S1063784216010217

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216010217

Keywords

Navigation