Skip to main content
Log in

Linear (in oscillation dimensionless amplitude) interaction between the modes of a nonspherical charged drop in an external electrostatic field

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The stability of a heavily charged drop in a weak uniform electrostatic field (in which the equilibrium shape of the drop can be represented by a prolate spheroid) is calculated in the fourth order of smallness in the eccentricity of the spheroidal drop and in the first order of smallness in the drop oscillation dimensionless amplitude. It is found that as the order of approximation in eccentricity grows, so does the number of modes interacting with the initially excited mode. In the given order of smallness, the preferred (initially excited) mode is shown to interact with the nearest eight modes. The drop becomes unstable if such is the second mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Gabovich, Sov. Phys. Usp. 26, 447 (1983).

    Article  ADS  Google Scholar 

  2. A. G. Bailey, Atomization Sprays 2, 95 (1986).

    ADS  Google Scholar 

  3. A. I. Grigor’ev, S. O. Shiryaeva, A. N. Zharov, and V. A. Koromyslov, Elektrokhim. Obrab. Met., No. 3, 25 (2005).

    Google Scholar 

  4. A. Doyle, D. R. Moffet, and B. Vonnegut, J. Coll. Sci. 19, 136 (1964).

    Article  Google Scholar 

  5. T. G. O. Berg, R. J. Trainor, and U. Vaughan, J. Atmos. Sci. 77, 1173 (1970).

    Article  Google Scholar 

  6. J. D. Schweizer and D. N. Hanson, J. Colloid Interface Sci. 35, 417 (1971).

    Article  Google Scholar 

  7. M. Roulleau and M. Desbois, J. Atmos. Sci. 29, 565 (1972).

    Article  ADS  Google Scholar 

  8. D. Duft, H. Lebbeus, and B. A. Huber, Phys. Rev. Lett. 89, 1 (2002).

    Article  Google Scholar 

  9. D. Duft, T. Achtzehn, R. Muller, et al., Nature 421, 128 (2003).

    Article  ADS  Google Scholar 

  10. R. L. Grimm and J. L. Beauchamp, J. Phys. Chem. B 109, 8244 (2005).

    Article  Google Scholar 

  11. J. W. Strutt (Rayleigh), Philos. Mag. 14, 184 (1882).

    Article  Google Scholar 

  12. S. O. Shiryaeva, Tech. Phys. 51, 1284 (2006).

    Article  Google Scholar 

  13. A. I. Grigor’ev, S. O. Shiryaeva, and E. I. Belavina, Sov. Phys. Tech. Phys. 34, 602 (1989).

    Google Scholar 

  14. S. O. Shiryaeva, Tech. Phys. 51, 385 (2006).

    Article  Google Scholar 

  15. D. A. Varshalovich, A. N. Moskalev, and V. K. Khersonskii, Quantum Theory of Angular Momentum (World Sci., Singapore, 1988).

    Book  Google Scholar 

  16. S. O. Shiryaeva, A. I. Grigor’ev, and D. O. Kornienko, Tech. Phys. 55, 1558 (2010).

    Article  Google Scholar 

  17. S. O. Shiryaeva, A. I. Grigor’ev, and A. A. Shiryaev, Tech. Phys. 58, 664 (2013).

    Article  Google Scholar 

  18. M. I. Rabinovich and D. I. Trubetskov, Introduction to the Theory of Oscillations and Waves (Kluwer, Dordrecht, 1989).

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. O. Shiryaeva.

Additional information

Original Russian Text © S.O. Shiryaeva, N.A. Petrushov, A.I. Grigor’ev, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 61, No. 1, pp. 37–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiryaeva, S.O., Petrushov, N.A. & Grigor’ev, A.I. Linear (in oscillation dimensionless amplitude) interaction between the modes of a nonspherical charged drop in an external electrostatic field. Tech. Phys. 61, 33–41 (2016). https://doi.org/10.1134/S1063784216010187

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216010187

Keywords

Navigation