Technical Physics

, Volume 60, Issue 12, pp 1733–1737 | Cite as

Electrical breakdown of a dielectric on the voltage pulse trailing edge: Investigation in terms of the incubation time concept

  • Yu. V. Petrov
  • V. A. Morozov
  • I. V. Smirnov
  • A. A. Lukin
Theoretical and Mathematical Physics


The time effects of electrical breakdown at the leading and trailing edges of a voltage pulse applied to an interelectrode gap are studied. The pulsed dielectric strengths of limestone, sandstone, clay, paraffin, and water are determined experimentally at fixed parameters of the voltage pulse and different lengths of the dielectric-filled interelectrode gap. Experimental data are explained in terms of a structure–time approach based on the incubation time criterion. It is found that breakdown occurs when a sufficient power impulse (electric energy) arises within a characteristic time rather than when the electric field reaches a limit.


Voltage Pulse Electrical Breakdown Dielectric Strength Breakdown Channel Breakdown Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. I. Kuznetsov, V. F. Vazhov, and M. Yu. Zhurkov, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 4, 17 2011.Google Scholar
  2. 2.
    V. F. Vazhov and N. V. Kozlova, Vestn. Nauki Sib., Ser. 5, No. 1(2), 79 (2012).Google Scholar
  3. 3.
    Yu. V. Petrov, Dokl. Phys. 49, 246 2004.ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Vorob’ev, G. A. Vorob’ev, E. K. Zavadovskaya, et al., Pulsed Breakdown and Fracture of Dielectrics and Rocks (Tomsk. Univ., Tomsk, 1971).Google Scholar
  5. 5.
    G. A. Mesyats, Tech. Phys. Lett. 31, 1061 2005.ADSCrossRefGoogle Scholar
  6. 6.
    A. A. Vorob’ev, G. A. Vorob’ev, and A. T. Chepikov, “Regularity of breakdown in solid–liquid dielectric interface under a pulse of voltage,” Inventor’s Certificate No. A–122 (1998).Google Scholar
  7. 7.
    L. V. Tarasova, Usp. Fiz. Nauk 56 (2), 321 1956.CrossRefMathSciNetGoogle Scholar
  8. 8.
    V. F. Vazhov, V. M. Muratov, S. Yu. Datskevich, et al., Phys. Solid State 55, 725 2013.ADSCrossRefGoogle Scholar
  9. 9.
    S. P. Vavilov and G. A. Mesyats, Izv. Vyssh. Uchebn. Zaved., Fiz., No. 8, 90 1970.Google Scholar
  10. 10.
    V. Bratov and Yu. Petrov, Int. J. Fract. 146, 53 2007.CrossRefGoogle Scholar
  11. 11.
    Yu. V. Petrov and P. A. Glebovskii, Tech. Phys. 49, 1447 2004.CrossRefGoogle Scholar
  12. 12.
    Yu. V. Petrov, Dokl. Phys. 59, 56 2014.ADSCrossRefGoogle Scholar
  13. 13.
    I. I. Kalyatskii, G. M. Kassirov, G. V. Smirnov, and N. N. Frolov, Zh. Tekh. Fiz. 45, 1547 1975.Google Scholar
  14. 14.
    G. M. Kassirov, Sov.Phys. Tech. Phys. 11, 1403 1966.Google Scholar
  15. 15.
    G. A. Mesyats, S. P. Bugaev, D. I. Proskurovskii, et al., Radiotekh. Elektron. (Moscow) 14 (12), 222 1969.Google Scholar
  16. 16.
    B. Juttner, W. Rohrbeck, and H. Wolff, in Proceedings of the 9th International Conference on Phenomena in Ionized Gases (ICPIG), Bucharest, Hungary, 1969, p. 140.Google Scholar
  17. 17.
    A. A. Emel’yanov, Tech. Phys. 48, 1192 2003.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • Yu. V. Petrov
    • 1
  • V. A. Morozov
    • 1
  • I. V. Smirnov
    • 1
  • A. A. Lukin
    • 1
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia

Personalised recommendations