Skip to main content
Log in

Deformation of liquid drops moving in a gas medium

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Deformation of drops (with initial characteristic sizes of 3–6 mm) of widely used liquids (water, kerosene, and ethyl alcohol) moving in air with moderate velocities (up to 5 m/s) is investigated experimentally using a high-speed (105 frames per second) video camera. The characteristic “deformation cycles” for drops are established. The duration, length, and amplitude of variation of the drop sizes in each cycle are determined. It is shown how the initial size and velocity of drops affect these characteristics. The experimental results are processed using the similarity criteria (Weber and Reynolds numbers) adopted for investigating the motion of liquid drops. The features of the processes under investigation are outlined; it is shown that the conditions and characteristics of deformation of drops are determined not only by the effect of viscous, inertial, and surface tension forces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Dubrovskii, V. V. Podvysotskii, and A. A. Shraiber, Inzh.-Fiz. Zh. 58, 804 (1990).

    Google Scholar 

  2. A. Wierzba, Exp. Fluids 9, 59 (1990).

    Article  Google Scholar 

  3. A. A. Shreiber, A. M. Podvisotski, and V. V. Dubrovski, Atomization Sprays 6, 667 (1996).

    Article  Google Scholar 

  4. A. I. Ivandaev, A. G. Kutushev, and R. I. Nigmatulin, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 16, 209 (1981).

    Google Scholar 

  5. A. L. Gonor and V. Ya. Rivkind, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 17, 86 (1982).

    Google Scholar 

  6. L. P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 19, 721 (1993).

    Article  MATH  Google Scholar 

  7. E. H. Trinh, R. G. Holt, and D. B. Thiessen, Phys. Fluids 8, 43 (1996).

    Article  ADS  Google Scholar 

  8. A. K. Flock, D. R. Guildenbecher, J. Chen, et al., Int. J. Multiphase Flow 47, 37 (2012).

    Article  Google Scholar 

  9. J. E. Sprittles and Y. D. Shikhmurzaev, Phys. Fluids 24, 122105 (2012).

    Article  ADS  Google Scholar 

  10. El-Sayed R. Negeed, M. Albeirutty, and Y. Takata, Int. J. Therm. Sci. 79, 1 (2014).

    Article  Google Scholar 

  11. S. L. Soo, Fluid Dynamics of Multiphase Systems (Blaisdell, New York, 1967).

    MATH  Google Scholar 

  12. V. G. Labeish, Hydromechanics and Gas Dynamics: Tutorial (Severo-Zapadn. Politekh. Inst., Leningrad, 1973).

    Google Scholar 

  13. V. I. Terekhov and M. A. Pakhomov, Heat and Mass Transfer and Hydrodynamics in Gas-Drop Flows (NGTU, Novosibirsk, 2009).

    Google Scholar 

  14. R. S. Volkov, O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, J. Eng. Phys. Thermophys. 86, 1413 (2013).

    Article  Google Scholar 

  15. P. C. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Tech. Phys. 59, 959 (2014).

    Article  Google Scholar 

  16. G. V. Kuznetsov and R. A. Strizhak, High Temp. 52, 568 (2014).

    Article  Google Scholar 

  17. P. C. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Thermophys. Aeromech. 21, 255 (2014).

    Article  ADS  Google Scholar 

  18. G. V. Kuznetsov and P. A. Strizhak, Tech. Phys. Lett. 40, 499 (2014).

    Article  ADS  Google Scholar 

  19. J. Westerweel, Meas. Sci. Technol. 8, 1379 (1997).

    Article  ADS  Google Scholar 

  20. J. M. Foucaut and M. Stanislas, Meas. Sci. Technol. 13, 1058 (2002).

    Article  ADS  Google Scholar 

  21. N. Damaschke, H. Nobach, and S. Tropea, Exp. Fluids 32, 143 (2002).

    Article  Google Scholar 

  22. M. P. Tokarev, D. M. Markovich, and A. B. Bil’skii, Vychisl. Tekhnol. 12 (3), 109 (2007).

    MATH  Google Scholar 

  23. A. V. Bil’skii, Yu. A. Lozhkin, and D. M. Markovich, Teplofiz. Aeromekh. 18, 1 (2011).

    Google Scholar 

  24. H. Schenck, Theories of Engineering Experimentation (CRC, 1979).

    Google Scholar 

  25. A. N. Zaidel’, Elemental Estimations of Measurement Errors (Nauka, Leningrad, 1968).

    Google Scholar 

  26. N. B. Vargaftik, Tables of the Thermophysical Properties of Liquids and Gases (Halsted, New York, 1975).

    Google Scholar 

  27. A. A. Gukhman, Introduction to Theory of Similarity (Acadenmic, New York, 1965).

    Google Scholar 

  28. V. I. Terekhov, K. A. Sharov, and N. E. Shishkin, Teplofiz., Aeromekh. 6, 331 1999).

    Google Scholar 

  29. Yu. I. Yalamov and N. N. Golikova, Tech. Phys. 51, 173 (2006).

    Article  Google Scholar 

  30. P. B. Abrosimov, P. V. Zaplatin, B. C. Nagornyi, et al., Tech. Phys. 52, 1429 (2007).

    Article  Google Scholar 

  31. E. V. Anokhina, Tech. Phys. 55, 1107 (2010).

    Article  Google Scholar 

  32. A. Yu. Dem’yanov, O. Yu. Dinariev, and E. N. Ivanov, Inzh.-Fiz. Zh. 85, 1145 (2012).

    Google Scholar 

  33. A. Yu. Varaksin, Teplofiz. Vys. Temp. 51, 421 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Strizhak.

Additional information

Original Russian Text © R.S. Volkov, A.O. Zhdanova, G.V. Kuznetsov, P.A. Strizhak, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 10, pp. 29–33.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, R.S., Zhdanova, A.O., Kuznetsov, G.V. et al. Deformation of liquid drops moving in a gas medium. Tech. Phys. 60, 1443–1447 (2015). https://doi.org/10.1134/S1063784215100291

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215100291

Keywords

Navigation