Skip to main content
Log in

Scanning tunneling microscopy observation of ultrathin epitaxial CoSi2(111) films grown at a high temperature

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Scanning tunneling microscopy (STM) is used to study the basic laws of growth of ultrathin epitaxial CoSi2(111) films with Co coverages up to 4 ML formed upon sequential deposition of Co and Si atoms taken in a stoichiometric ratio onto the Co–Si(111) surface at room temperature and subsequent annealing at 600–700°C. When the coverage of Co atoms is lower than ~2.7 ML, flat CoSi2 islands up to ~3 nm high with surface structure 2 × 2 or 1 × 1 grow. It is shown that continuous epitaxial CoSi2 films containing 3–4 triple Si–Co–Si layers grow provided precise control of deposition. CoSi2 films can contain inclusions of the local regions with (2 × 1)Si reconstruction. At a temperature above 700°C, a multilevel CoSi2 film with pinholes grows because of vertical growth caused by the difference between the free energies of the CoSi2(111) and Si(111) surfaces. According to theoretical calculations, structures of A or B type with a coordination number of 8 of Co atoms are most favorable for the CoSi2(111)2 × 2 interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Pirri, J. C. Peruchetti, D. Bolmont, and G. Gewinner, Phys. Rev. B 33, 4108 (1986).

    Article  ADS  Google Scholar 

  2. F. Hellman and R. T. Tung, Phys. Rev. B 37, 10786 (1988).

    Article  ADS  Google Scholar 

  3. D. D. Charnbliss, T. N. Rhodin, and J. E. Rowe, Phys. Rev. B 45, 1193 (1992).

    Article  ADS  Google Scholar 

  4. A. E. Dolbak, B. Z. Olshanetsky, and S. A. Teys, Surf. Sci. 373, 43 (1997).

    Article  ADS  Google Scholar 

  5. U. Starke, J. Schardt, W. Weiss, G. Rangelov, T. H. Fauster, and K. Heinz, Surf. Rev. Lett. 5, 139 (1998).

    Article  Google Scholar 

  6. A. E. Dolbak, B. Z. Olshanetsky, S. A. Teys, and R. A. Zhachuk, Phys. Solid State 41, 1364 (1999).

    Article  ADS  Google Scholar 

  7. A. Seuber, J. Schardt, W. Weib, U. Starke, K. Heinz, and Th. Fauster, Appl. Phys. Lett. 76, 727 (2000).

    Article  ADS  Google Scholar 

  8. K. J. Kim, T.-H. Kang, K.-W. Kim, H.-J. Shin, and B. Kim, Appl. Surf. Sci. 161, 268 (2000).

    Article  ADS  Google Scholar 

  9. M. V. Gomoyunova, I. I. Pronin, D. A. Valdaitsev, and N. S. Faradzhev, Phys. Solid State 43, 569 (1999).

    Article  ADS  Google Scholar 

  10. M. V. Gomoyunova, G. S. Grebenyuk, and I. I. Pronin, Tech. Phys. 56, 865 (2011).

    Article  Google Scholar 

  11. S. A. Chambers, S. B. Anderson, H. W. Chen, and J. H. Weaver, Phys. Rev. B 34, 913 (1986).

    Article  ADS  Google Scholar 

  12. P. Luches, A. Rota, S. Valeri, I. I. Pronin, D. A. Valdaitsev, N. S. Faradzhev, and M. V. Gomoyunova, Surf. Sci. 511, 303 (2002).

    Article  ADS  Google Scholar 

  13. J. M. Gibson, J. L. Batstone, and R. T. Tung, Appl. Phys. Lett. 51, 445 (1987).

    Article  Google Scholar 

  14. A. E. M. Fischer, W. F. J. Slijkerman, K. Nakagawa, R. J. Smith, and J. F. van der Veen, J. Appl. Phys. 64, 3005 (1988).

    Article  ADS  Google Scholar 

  15. R. Stalder, H. Sirringhaus, N. Onda, and H. von Kanel, Sur. Sci. 258, 153 (1991).

    Article  ADS  Google Scholar 

  16. C. W. T. Bulle-Lieuwma, Appl. Surf. Sci. 68, 1 (1993).

    Article  ADS  Google Scholar 

  17. M. F. Chisholm, S. J. Pennycook, R. Jebasinski, and S. Mantl, Appl. Phys. Lett. 64, 2409 (1994).

    Article  ADS  Google Scholar 

  18. S. Goncalves-Conto, U. Scharer, E. Muller, H. von Kanel, L. Miglio, and F. Tavazza, Phys. Rev. B 55, 7213 (1997).

    Article  ADS  Google Scholar 

  19. H. Von Kanel, Mater. Sci. Rep. 8, 193 (1992).

    Article  Google Scholar 

  20. J. Vrijrnoeth, S. Zaima, E. Vlieg, and J. W. M. Frenken, Phys. Rev. B 45, 6700 (1992).

    Article  ADS  Google Scholar 

  21. P. A. Bennett, S. A. Parikh, M. Y. Lee, and D. G. Cahill, Surf. Sci. 312, 377 (1994).

    Article  ADS  Google Scholar 

  22. B. Ilge, G. Palasantzas, and J. de Nijs, and L. J. Geerligs, Surf. Sci. 414, 279 (1998).

    Article  ADS  Google Scholar 

  23. M. A. K. Zilani, L. Liu, H. Xu, Y. P. Feng, X.-S. Wang, and A. T. S. Wee, J. Phys.: Condens. Matter. 18, 6987 (2006).

    ADS  Google Scholar 

  24. R. T. Tung, Mater. Chem. Phys. 32, 107 (1992).

    Article  Google Scholar 

  25. S. P. Murarka, Intermetallics 3, 173 (1995).

    Article  Google Scholar 

  26. D. A. Olyanich, T. V. Utas, A. A. Alekseev, V. G. Kotlyar, A. V. Zotov, and A. A. Saranin, Surf. Sci. 625, 57 (2014).

    Article  ADS  Google Scholar 

  27. A. Catana, P. E. Schmid, S. Rieubland, F. Levy, and P. J. Stadelmann, J. Phys.: Condens. Matter. 1, 3999 (1989).

    ADS  Google Scholar 

  28. A. Catana, P. E. Schmid, P. Lu, and D. J. Smith, Philos. Mag. A 66, 933 (1992).

    Article  ADS  Google Scholar 

  29. H. Von Kanel, C. Schwarz, S. Goncalves-Conto, E. Muller, L. Miglio, F. Tavazza, and G. Malegori, Phys. Rev. Lett. 74, 1163 (1995).

    Article  ADS  Google Scholar 

  30. A. P. Horsfield and H. Fujitani, Phys. Rev. B 63, 235303 (2001).

    Article  ADS  Google Scholar 

  31. E. G. Moroni, R. Podloucky, and J. Hafner, Phys. Rev. Lett. 81, 1969 (1998).

    Article  ADS  Google Scholar 

  32. D. R. Hamann, Phys. Rev. Lett. 60, 313 (1988).

    Article  ADS  Google Scholar 

  33. G. Rossi, X. Jin, A. Santaniello, P. DePadova, and D. Chandesris, Phys. Rev. Lett. 62, 191 (1989).

    Article  ADS  Google Scholar 

  34. R. T. Tung, J. M. Gibson, and J. M. Poate, Appl. Phys. Lett. 42, 888 (1983).

    Article  ADS  Google Scholar 

  35. R. T. Tung and J. M. Gibsonate, Phys. Rev. Lett. 50, 429 (1983).

    Article  ADS  Google Scholar 

  36. L. Ruan and D. M. Chen, Appl. Phys. Lett. 72, 3464 (1998).

    Article  ADS  Google Scholar 

  37. I. V. Belousov, A. N. Grib, and G. V. Kuznetsov, Semicond. Phys., Quantum Electron. Optoelectron. 9, 29 (2006).

    Google Scholar 

  38. R. T. Tung and J. L. Batstone, Appl. Phys. Lett. 52, 648 (1988).

    Article  ADS  Google Scholar 

  39. D. A. Olyanich, T. V. Utas, V. G. Kotlyar, A. V. Zotov, A. A. Saranin, L. N. Romashev, N. I. Solin, and V. V. Ustinov, Appl. Surf. Sci. 292, 954 (2014).

    Article  ADS  Google Scholar 

  40. R. J. Phaneuf, Y. Hong, S. Horch, and P. A. Bennett, Phys. Rev. Lett. 78, 4605 (1997).

    Article  ADS  Google Scholar 

  41. R. J. Phaneuf, P. A. Bennett, M. Marsi, S. Gunther, L. Gregoratti, L. Casalis, and M. Kiskinova, Surf. Sci. 431, 232 (1999).

    Article  ADS  Google Scholar 

  42. J. Vrijmoeth, A. G. Schins, and J. F. van der Veen, Phys. Rev. B 40, 3121 (1989).

    Article  ADS  Google Scholar 

  43. S. Walter, F. Blobner, M. Kraus, S. Muller, K. Heinz, and U. Starke, J. Phys.: Condens. Matter. 15, 5207 (2003).

    ADS  Google Scholar 

  44. P. J. Van den Hoek, W. Ravenek, and E. J. Baerends, Surf. Sci. 205, 549 (1988).

    Article  ADS  Google Scholar 

  45. K. Oura, V. G. Lifshits, A. V. Zotov, A. A. Saranin, and M. Katayama, Surface Science: An Introduction (Springer, Berlin, 2003).

    Book  Google Scholar 

  46. R. T. Tung, J. M. Poate, J. C. Bean, J. M. Gibson, and D. C. Jacobson, Thin Solid Films 93, 77 (1982).

    Article  ADS  Google Scholar 

  47. O. A. Utas, T. V. Utas, V. G. Kotlyar, A. V. Zotov, A. A. Saranin, and V. G. Lifshits, Surf. Sci. 596, 53 (2005).

    Article  ADS  Google Scholar 

  48. K. Ishibashi, and S. Furukawa, Jpn. J. Appl. Phys. 24, 912 (1985).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. G. Kotlyar.

Additional information

Original Russian Text © A.A. Alekseev, D.A. Olyanich, T.V. Utas, V.G. Kotlyar, A.V. Zotov, A.A. Saranin, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 10, pp. 94–100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A.A., Olyanich, D.A., Utas, T.V. et al. Scanning tunneling microscopy observation of ultrathin epitaxial CoSi2(111) films grown at a high temperature. Tech. Phys. 60, 1508–1514 (2015). https://doi.org/10.1134/S1063784215100023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215100023

Keywords

Navigation