Skip to main content
Log in

Role of water impurity in impact fracture of quartz in the vicinity of the phase transition at 573°C

  • Short Communications
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Synthetic quartz single crystals are subjected to fracture by a falling load in the temperature range from 20 to 650°C (i.e., including the region of the α → β phase transition). The intensity of integrated acoustic emission (AE) generated during the impact is recorded in the frequency range from 80 kHz to 1 MHz. In the temperature range 20–300°C and at temperatures above the phase transition temperature (573°C), the energy distributions in temporal AE series are correctly described by the exponential function typical of random events, but at 400 and 500°C, the energy distributions follow the power law typical of correlated accumulation of microcracks in heterogeneous materials. The temperature effect is explained by the presence of submicrometer inclusions of a vapor—water mixture in the material, which exist as a rule in natural and synthetic quartz single crystals. Upon heating of the material to a certain critical temperature, the internal pressure in the bubbles of liquid attains a value for which the shock wave causes cracking around a large number of uniformly distributed inclusions. As a result, a correlated improper process of accumulation of microscopic defects, which is obviously observed only in heterogeneous materials, evolves in the bulk of deformed quartz heated to 400–500°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. E. E. Damaskinskaya, V. S. Kuksenko, and N. G. Tomilin, Fiz. Zemli, No. 10, 47 (1994).

    Google Scholar 

  2. D. Amitrano, Int. J. Fracture 139, 369 (2006).

    Article  MATH  Google Scholar 

  3. P. V. Makarov, Fiz. Mezomekh. 10 (3), 23 (2007).

    Google Scholar 

  4. V. Kuksenko, N. Tomilin, and A. Chmel, Tectonophysics 431, 123 (2007).

    Article  ADS  Google Scholar 

  5. I. P. Shcherbakov, V. S. Kuksenko, and A. E. Chmel’, Fiz. Tekh. Probl. Razrab. Polezn. Iskop., No. 4, 78 (2012).

    Google Scholar 

  6. W. C. Godbeer and R. W. T. Wilkins, Am. Mineral. 62, 831 (1977).

    Google Scholar 

  7. K. Burlinson, Bull. Mineral. 111, 267 (1988).

    Google Scholar 

  8. N. N. Ankusheva, Litosfera, No. 4, 93 (2008).

    Google Scholar 

  9. K. Burlinson, in Proceedings of the 2nd Meeting of Asian Current Researches on Fluid Inclusions, Kharagpur, India, 2008.

  10. D. T. Griggs and J. D. Blacic, Science 147, 292 (1965).

    Article  ADS  Google Scholar 

  11. I. P. Shcherbakov and A. E. Chmel’, Fiz. Khim. Stekla 39, 745 (2013).

    Google Scholar 

  12. S. Momon, M. Moevus, N. Godin, M. R’Mili, P. Reynaud, G. Fantozzi, and G. Fayolle, Composites, Part A: Appl. Sci. Manufact. 41, 913 (2010).

    Article  Google Scholar 

  13. A. Carpinteri, Int. J. Solids Struct. 34, 291 (1994).

    Article  Google Scholar 

  14. A. Tantot, S. Santucci, O. Ramos, S. Deschanel, M.-A. Verdier, E. Mony, Y. Wei, S. Ciliberto, L. Vanel, and P. C. F. Di Stefano, Phys. Rev. Lett. 111, 154301 (2013).

    Article  Google Scholar 

  15. B. J. Skinner, “Thermal Expansion,” in Handbook of Physical Constants, Ed. by S. J. Clark, Mem.-Geol. Soc. Am. 97, 75 (1966).

    Google Scholar 

  16. P. W. J. Glover, P. Baud, M. Darot, P. G. Meredith, S. A. Boon, M. Le Ravalec, S. Zoussi, and T. Reuschlé, Geophys. J. Int. 120, 775 (1995).

    Article  ADS  Google Scholar 

  17. D. D. Bowman, G. Oullon, C. G. Sammis, A. Sornette, and D. Sornette, J. Geophys. Res. 103, 24359 (1998).

    Google Scholar 

  18. L. Hall and R. J. Bodnar, Tectonophysics 168, 283 (1989).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. P. Shcherbakov.

Additional information

Original Russian Text © I.P. Shcherbakov, V.S. Kuksenko, A.E. Chmel’, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 9, pp. 149–154.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shcherbakov, I.P., Kuksenko, V.S. & Chmel’, A.E. Role of water impurity in impact fracture of quartz in the vicinity of the phase transition at 573°C. Tech. Phys. 60, 1405–1409 (2015). https://doi.org/10.1134/S1063784215090200

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215090200

Keywords

Navigation