Skip to main content
Log in

Experimental investigation of the influence of the liquid drop size and velocity on the parameters of drop deformation in air

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The deformation of water, kerosene, and ethyl alcohol drops traveling a distance of up to 1 m in air with different velocities (1–5 m/s) is recorded by high-speed photography (the frame of the cross-correlation camera is less than 1 µs). It is shown that the shape of the drops varies cyclically. Several tens of “deformation cycles” are found, which have characteristic times, drop size variation amplitudes, and number of shapes. It is found that the velocity and size of the drops influence the parameters of their deformation cycles. Experiments with the drops are conducted in air at moderate Weber numbers (We < 10).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Ivandaev, A. G. Kutushev, and R. I. Nigmatulin, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 16, 209 (1981)

    Google Scholar 

  2. A. L. Gonor and V. Ya. Rivkind, Itogi Nauki Tekh., Ser.: Mekh. Zhidk. Gaza 17, 86 (1982).

    Google Scholar 

  3. A. Wierzba, Exp. Fluids 9, 59 (1990).

    Article  Google Scholar 

  4. V. V. Dubrovskii, V. V. Podvysotskii, and A. A. Shraiber, Inzh.-Fiz. Zh. 58, 804 (1990).

    Google Scholar 

  5. L. P. Hsiang and G. M. Faeth, Int. J. Multiphase Flow 19, 721 (1993).

    Article  MATH  Google Scholar 

  6. A. A. Shreiber, A. M. Podvisotski, and V. V. Dubrovski, Atomization Sprays 6, 676 (1996).

    Google Scholar 

  7. S. S. Hwang, Z. Liu, and R. D. Reitz, Atomization Sprays 6, 353 (1996).

    Article  Google Scholar 

  8. D. R. Guildenbecher and P. E. Sojka, Atomization Sprays 21, 139 (2011).

    Article  Google Scholar 

  9. A. K. Flock, D. R. Guildenbecher, J. Chen, et al., Int. J. Multiphase Flow 47, 37 (2012).

    Article  Google Scholar 

  10. J. E. Sprittles and Y. D. Shikhmurzaev, Phys. Fluids 24, 122105 (2012).

    Article  ADS  Google Scholar 

  11. V. A. Arkhipov, I. M. Vasenin, V. F. Trofimov, et al., Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 2, 5 (2013).

    Google Scholar 

  12. El-Sayed R. Negeed, M. Albeirutty, and Y. Takata, Int. J. Therm. Sci. 79, 1 (2014).

    Article  Google Scholar 

  13. Ya. E. Geguzin, Droplet (Nauka, Moscow, 1973).

    Google Scholar 

  14. M. S. Volynskii, Unordinary Life of an Ordinary Drop (Znanie, Moscow, 1986).

    Google Scholar 

  15. R. I. Nigmatulin, Dynamics of Monophase Media (Nauka, Moscow, 1987).

    Google Scholar 

  16. R. S. Volkov, O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, “Experimental study of the change in the mass of water droplets in their motion through high-temperature combustion products,” J. Eng. Phys. Thermophys. 86, 1413 (2013).

    Article  Google Scholar 

  17. G. V. Kuznetsov and P. A. Strizhak, Tech. Phys. Lett. 40, 499 (2014).

    Article  ADS  Google Scholar 

  18. R. S. Volkov, G. V. Kuznetsov, and P. A. Strizhak, Tech. Phys. 59, 959 (2014).

    Article  Google Scholar 

  19. J. Westerweel, Meas. Sci. Technol. 8, 1379 (1997).

    Article  ADS  Google Scholar 

  20. J. M. Foucaut and M. Stanislas, Meas. Sci. Technol. 13, 1058 (2002).

    Article  ADS  Google Scholar 

  21. M. P. Tokarev, D. M. Markovich, and A. V. Bil’skii, Vychisl. Tekhnol. 12, 109 (2007).

    Google Scholar 

  22. N. Damaschke, H. Nobach, and C. Tropea, Exp. Fluids 32, 143 (2002).

    Article  Google Scholar 

  23. A. V. Bil’skii, Yu. A. Lozhkin, and D. M. Markovich, Teplofiz. Aeromekh. 18, 1 (2011).

    Google Scholar 

  24. N. B. Vargaftik, Tables of the Thermal Properties of Liquids and Gases (Halsted, New York, 1975).

    Google Scholar 

  25. A. Ya. Korol’chenko, Flammable and Explosive Matters and Materials and Means of Firefighting: A Handbook (Pozhnauka, Moscow, 2004), Chap. 1.

    Google Scholar 

  26. A. Ya. Korol’chenko, Flammable and Explosive Matters and Materials and Means of Firefighting: A Handbook (Pozhnauka, Moscow, 2004), Chap. 2.

    Google Scholar 

  27. A. P. Il’in, O. B. Nazarenko, A. V. Korshunov, et al., Features of Physicochemical Properties of Nanopowders and Nanomaterials (TPU, Tomsk, 2012).

    Google Scholar 

  28. X. N. Shenk, Theories of Engineering Experimentation (CRC, Boca Raton, 1979).

    Google Scholar 

  29. A. N. Zaidel’, Elementary Estimates of Experimental Errors (Nauka, Leningrad, 1968).

    Google Scholar 

  30. J. Eggers and E. Villermaux, Rep. Prog. Phys. 71, 036601 (2008).

    Article  ADS  Google Scholar 

  31. R. S. Volkov, A. O. Zhdanova, and P. A. Strizhak, Eur. Phys. J. Web Conf. 76, 01038 (2014).

    Article  Google Scholar 

  32. V. I. Terekhov, K. A. Sharov, and N. E. Shishkin, Teplofiz. Aeromekh. 6, 331 (1999).

    Google Scholar 

  33. Yu. I. Yalamov and N. N. Golikova, Tech. Phys. 51, 173 (2006).

    Article  Google Scholar 

  34. P. B. Abrosimov, P. V. Zaplatin, V. S. Nagornyi, et al., Tech. Phys. 52, 1479 (2007).

    Article  Google Scholar 

  35. E. V. Anokhina, Tech. Phys. 55, 1107 (2010).

    Article  Google Scholar 

  36. A. Yu. Dem’yanov, O. Yu. Dinariev, and E. N. Ivanov, Inzh.-Fiz. Zh. 85, 1145 (2012).

    Google Scholar 

  37. A. Yu. Varaksin, Teplofiz. Vys. Temp. 51, 421 (2013).

    Google Scholar 

  38. G. V. Kuznetsov and P. A. Strizhak, Tepl. Protsessy Tekh., No. 6, 254 (2013).

    Google Scholar 

  39. O. V. Vysokomornaya, G. V. Kuznetsov, and P. A. Strizhak, “Heat and mass transfer in the process of movement of water drops in a high-temperature gas medium,” J. Eng. Phys. Thermophys. 86, 62 (2013).

    Article  Google Scholar 

  40. P. A. Strizhak, “Influence of droplet distribution in a “water slug” on the temperature and concentration of combustion products in its wake,” J. Eng. Phys. Thermophys. 86, 895 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. A. Strizhak.

Additional information

Original Russian Text © R.S. Volkov, O.V. Vysokomornaya, G.V. Kuznetsov, P.A. Strizhak, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 8, pp. 15–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, R.S., Vysokomornaya, O.V., Kuznetsov, G.V. et al. Experimental investigation of the influence of the liquid drop size and velocity on the parameters of drop deformation in air. Tech. Phys. 60, 1119–1125 (2015). https://doi.org/10.1134/S1063784215080290

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215080290

Keywords

Navigation