Skip to main content
Log in

Effect of oxidation of catalysts on the growth of carbon nanotubes

  • Short CommunicationS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The effect of oxidation of a nickel catalyst on the growth of carbon nanotubes is experimentally and theoretically analyzed. An expression for the solubility of impurity in the cluster is derived with allowance for the surface tension. It is demonstrated that the oxidation of the surface of the catalyst cluster causes a decrease in the effective coefficient of surface tension. This circumstance leads to an increase in the solubility of carbon in the cluster and an increase in the growth rate of carbon nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. S. V. Bulyarskii, Carbon Nanotubes: Technology, Control of Properties, and Application (Strezhen’, Ul’yanovsk, 2011).

    Google Scholar 

  2. J. Zhang, G. Yang, Y. Cheng, et al., Appl. Phys. Lett. 86, 184104 (2005).

    Article  ADS  Google Scholar 

  3. K. B. K. Teo, E. Minoux, L. Hudanski, et al., Nature 437, 968 (2005).

    Article  ADS  Google Scholar 

  4. W. B. Choi, D. S. Chung, J. H. Kang, et al., Appl. Phys. Lett. 75, 3129 (1999).

    Article  ADS  Google Scholar 

  5. C. J. Lee, J. Park, and J. A. Yu, Chem. Phys. Lett. 360, 250 (2002).

    Article  ADS  Google Scholar 

  6. R. Andrews, D. Jacques, D. L. Qian, and T. Rantell, Acc. Chem. Res. 35, 1008 (2002).

    Article  Google Scholar 

  7. R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College, London, 1998).

    Book  Google Scholar 

  8. H. Zhang, G. Cao, Z. Wang, Y. Yang, and Z. Gu, Top. Catal. 54, 986 (2011).

    Article  Google Scholar 

  9. K. Lucia, S. Noda Norberto, V. Antoninho, et al., J. Mater. Sci. 42, 914 (2007).

    Article  Google Scholar 

  10. S. S. Gorelik and M. Ya. Dashevskii, Materials Science of Semiconductors and Insulators (Metallurgiya, Moscow, 1988).

    Google Scholar 

  11. E. Terrado, I. Tacchini, A. M. Benito, et al., Carbon 47, 1189 (2009).

    Article  Google Scholar 

  12. S. Lee, Y. Chang, and L. Lee, N. Carbon Mater. 23, 302 (2008).

    Article  Google Scholar 

  13. S. V. Bulyarskii, Tech. Phys. 56, 1605 (2011).

    Article  Google Scholar 

  14. E. Vanhaecke, F. Huan, Y. Yu, et al., Top. Catal. 54, 986 (2011).

    Article  Google Scholar 

  15. L. Liu and S.-S. Fan, “Carbon nanotube array and method for making same,” US Patent No. 2004/0109815A1 (June 10, 2004).

    Google Scholar 

  16. S. V. Bulyarskiy and V. P. Oleynikov, Phys. Status Solidi 141, K7 (1987).

    Article  Google Scholar 

  17. S. V. Bulyarskii and V. I. Fistul’, Thermodynamics and Kinetics of Interacted Defects in Semiconductors (Nauka, Moscow, 1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Basaev.

Additional information

Original Russian Text © S.V. Bulyarskii, A.S. Basaev, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 8, pp. 147–149.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulyarskii, S.V., Basaev, A.S. Effect of oxidation of catalysts on the growth of carbon nanotubes. Tech. Phys. 60, 1249–1251 (2015). https://doi.org/10.1134/S1063784215080058

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215080058

Keywords

Navigation