Skip to main content

Morphology simulation of the surface subjected to low-energy ion sputtering

Abstract

A new 2D method of simulating the morphology of a surface subjected to low-energy ion sputtering with regard to sputtered material redeposition is suggested. The object of simulation is the profile of microgrooves arising on the silicon surface exposed to slow argon ions from the dense plasma of an rf induction discharge. Numerical simulation data and experimental data are in good agreement.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagnolli, Nanotechnology 18, 245303 (2007).

    ADS  Article  Google Scholar 

  2. 2.

    H.-B. Kim, G. Hobler, A. Steiger, A. Lugstein, and E. Bertagnolli, Nanotechnology 18, 265307 (2007).

    ADS  Article  Google Scholar 

  3. 3.

    G. Hobler and D. Kovac, Nucl. Instrum. Methods Phys. Res. B 269, 1609 (2011).

    ADS  Article  Google Scholar 

  4. 4.

    C. Ebm and G. Hobler, Nucl. Instrum. Methods Phys. Res. B 267, 2987 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    A. Mutzke, R. Schneider, and I. Bizyukov, J. Nucl. Mater. 390–391, 115 (2009).

    Article  Google Scholar 

  6. 6.

    I. Bizyukov, A. Mutzke, R. Schneider, and J. Davis, Nucl. Instrum. Methods Phys. Res. B 268, 2631 (2010).

    ADS  Article  Google Scholar 

  7. 7.

    W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin, 1991).

    Book  Google Scholar 

  8. 8.

    A. P. Mahorowala and H. H. Sawin, J. Vac. Sci. Technol. B 20, 1064 (2002).

    Article  Google Scholar 

  9. 9.

    A. S. Shumilov and I. I. Amirov, Mikroelektronika 36, 277 (2007).

    Google Scholar 

  10. 10.

    J. Lua and M. J. Kushner, J. Vac. Sci. Technol. A 19, 2652 (2001).

    ADS  Article  Google Scholar 

  11. 11.

    S. Hamaguchi, A. A. Mayo, S. M. Rossnagel, D. E. Kotecki, K. R. Milkove, C. Wang, and C. E. Farrell, Jpn. J. Appl. Phys. 36, 4762 (1997).

    ADS  Article  Google Scholar 

  12. 12.

    K. Sugiura, S. Takahashi, M. Amano, T. Kajiyama, M. Iwayama, Y. Asao, N. Shimomura, T. Kishi, S. Ikegawa, H. Yoda, and A. Nitayama, Jpn. Appl. Phys. 48, 08HDO2 (2009).

    Article  Google Scholar 

  13. 13.

    A. Persson, F. Ericson, G. Thornell, and H. Nguyen, J. Micromech. Microeng. 21, 045014 (2011).

    ADS  Article  Google Scholar 

  14. 14.

    T. Aoki, S. Chiba, J. Matsuo, I. Yamada, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 180, 312 (2001).

    ADS  Article  Google Scholar 

  15. 15.

    S. Abdollahi-Alibeik, J. Zheng, J. P. McVittie, K. C. Saraswat, C. T. Gabriel, and S. C. Abraham, J. Vac. Sci. Technol. B 19, 179 (2001).

    Article  Google Scholar 

  16. 16.

    J. R. Belen, S. Gomez, M. Kiehbauch, D. Cooperberg, and E. S. Aydil, J. Vac. Sci. Technol. A 23, 99 (2005).

    ADS  Article  Google Scholar 

  17. 17.

    M. A. Sobolewski, J. K. Olthoff, Y. Wang, W. Guo, and B. Bai, J. Appl. Phys. 85, 3966 (1999).

    ADS  Article  Google Scholar 

  18. 18.

    X.-Y. Liu, M. S. Daw, J. D. Kress, D. E. Hanson, V. Arunachalam, D. G. Coronell, C.-L. Lu, and A. F. Voter, Thin Solid Films 422, 141 (2002).

    ADS  Article  Google Scholar 

  19. 19.

    H. Kersten, R. J. Snijkers, J. Schulze, G. M. Kroesen, H. Deutsch, and F. J. de Hoog, Appl. Phys. Lett. 64, 1496 (1994).

    ADS  Article  Google Scholar 

  20. 20.

    W. Guo, B. Bai, and H. H. Sawin, J. Vac. Sci. Technol. A 27, 388 (2009).

    Article  Google Scholar 

  21. 21.

    C. Steinbruchel, Appl. Phys. Lett. 55, 1960 (1989).

    ADS  Article  Google Scholar 

  22. 22.

    K. Ikuse, S. Yoshimura, K. Hine, M. Kiuchi, and S. Hamaguchi, J. Phys. D: Appl. Phys. 42, 135203 (2009).

    ADS  Article  Google Scholar 

  23. 23.

    M. P. Seah, and T. S. Nunney, J. Phys. D: Appl. Phys. 43, 253001 (2010).

    ADS  Article  Google Scholar 

  24. 24.

    Q. Wei, K.-D. Li, J. Lian, and L. Wang, J. Phys. D: Appl. Phys. 41, 172002 (2008).

    ADS  Article  Google Scholar 

  25. 25.

    Yu. V. Martynenko, A. V. Rogov, and V. I. Shul’ga, Tech. Phys. 57, 439 (2012).

    Article  Google Scholar 

  26. 26.

    H. Wu and A. Anders, J. Phys. D: Appl. Phys. 43, 065206 (2010).

    ADS  Article  Google Scholar 

  27. 27.

    R. Jain, R. Kasturi, and B. G. Schunck, Machine Vision (McGraw Hill, New York, 1995), Chap. 6, pp. 186–233.

    Google Scholar 

  28. 28.

    R. C. Gonzalez and R. E. Woods, Digital Image Processing (Addison-Wesley, Reading, 1993), Chap. 8.

    Google Scholar 

  29. 29.

    O. L. Bandman, Sist. Inform., No. 10, 57 (2005).

    Google Scholar 

  30. 30.

    A. A. Evseev and O. I. Nechaeva, Prikl. Diskret. Mat., No. 4, 72 (2009).

    Google Scholar 

  31. 31.

    G. G. Malinetskii and M. E. Stepantsov, Zh. Vychisl. Mat. Mat. Fiz. 36, 1017 (1998).

    MathSciNet  Google Scholar 

  32. 32.

    S. P. Zimin, I. I. Amirov, and E. S. Gorlachev, Semicond. Sci. Technol. 26, 055018 (2011).

    ADS  Article  Google Scholar 

  33. 33.

    M. A. Sobolewski, J. K. Olthoff, and Y. Wang, J. Appl. Phys. 85, 3966 (1999).

    ADS  Article  Google Scholar 

  34. 34.

    Y. Yamamura and H. Tawara, At. Data Nucl. Data Tables 62, 149 (1996).

    ADS  Article  Google Scholar 

  35. 35.

    S. J. Chang, J. C. Arnold, G. C. H. Zau, H.-S. Shin, and H. H. Sawin, J. Vac. Sci. Technol. 15, 1853 (1997).

    ADS  Article  Google Scholar 

  36. 36.

    E. A. Edelberg and E. S. Aydil, J. Appl. Phys. 86, 4799 (1999).

    ADS  Article  Google Scholar 

  37. 37.

    Y.-W. Mo, J. Kleiner, M. B. Webb, and M. G. Lagally, Phys. Rev. Lett. 66, 1998 (1991).

    ADS  Article  Google Scholar 

  38. 38.

    T. Doi, M. Ichikawa, S. Hosoki, and K. Ninomiya, Phys. Rev. B 53, 16609 (1996).

    ADS  Article  Google Scholar 

  39. 39.

    A. G. Knyazeva and S. G. Psakh’e, Fiz. Mezomekh. 9(2), 49 (2006).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. S. Shumilov.

Additional information

Original Russian Text © A.S. Shumilov, I.I. Amirov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 7, pp. 112–118.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shumilov, A.S., Amirov, I.I. Morphology simulation of the surface subjected to low-energy ion sputtering. Tech. Phys. 60, 1056–1062 (2015). https://doi.org/10.1134/S1063784215070245

Download citation

Keywords

  • Deep Groof
  • Diffusion Algorithm
  • Plasma Sputtering
  • Numerical Simulation Data
  • Atom Yield