Skip to main content
Log in

Fragment appearance energies in dissociative ionization of a sulfur hexafluoride molecule by electron impact

  • Atomic and Molecular Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Theoretical analysis of the fragment appearance energies corresponding to possible channels of formation of SF + k fragments in dissociative ionization of the SF6 molecule by an electron impact is carried out. The total energies of neutral and ion molecular and atomic fragments are calculated using the theoretical methods of the GAMESS program complex. It is concluded that apart from dissociative ionization via autoionizing repulsive electronic states of the SF6 molecule, the excitation channels for SF + k fragments and F2 molecules play a significant role, which leads to higher values of the observed fragment appearance energy as compared to theoretical values. The dependence of the energy corresponding to the formation of SF + k c fragments on the number k of fluorine atoms is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Zavilopulo, O. B. Shpenik, A. V. Snegursky, F. F. Chipev, and V. S. Vukstich, Tech. Phys. Lett. 31, 785 (2005).

    Article  Google Scholar 

  2. S. Yu. Remeta, O. V. Snigurs’ky, A. M. Zavilopulo, and O. B. Shpenik, Nauk. Visn. UzhNU, No. 19, 95 (2006).

    Google Scholar 

  3. B. P. Pullen and J. A. D. Stockdale, Int. J. Mass Spectrom. Ion Phys. 19, 35 (1976).

    Article  ADS  Google Scholar 

  4. V. H. Dibeler and F. L. Mohler, J. Res. Natl. Bur. Stand. 40, 25 (1948).

    Article  Google Scholar 

  5. V. H. Dibeler and J. A. Walker, J. Chem. Phys. 44, 4405 (1966).

    Article  ADS  Google Scholar 

  6. M. Sasanum, E. Ishiguro, T. Hayaishi, H. Masuko, Y. Morioka, T. Nakajima, and M. Nakamura, J. Phys. B 12, 4057 (1979).

    Article  ADS  Google Scholar 

  7. K. Mitsuke, S. Suzuki, T. Imamura, and I. Koyano, J. Chem. Phys. 93, 8717 (1990).

    Article  ADS  Google Scholar 

  8. D. L. Hildenbrand, J. Phys. Chem. 77, 897 (1973).

    Article  Google Scholar 

  9. J. Delwiche, Bull. Cl. Sci., Acad. R. Belg. 55, 215 (1969).

    Google Scholar 

  10. R. E. Fox and R. K. Curran, J. Chem. Phys. 34, 1595 (1961).

    Article  ADS  Google Scholar 

  11. M. Tichy, G. Javahery, N. D. Twiddy, and E. E. Ferguson, Int. J. Mass Spectrom. Ion Processes 79, 231 (1987).

    Article  ADS  Google Scholar 

  12. L. M. Babcock and G. E. Streit, J. Chem. Phys. 74, 5700 (1981).

    Article  ADS  Google Scholar 

  13. R. K. Singh, R. Hipper, and R. Shanker, Phys. Rev. A 67, 022704 (2003).

    Article  ADS  Google Scholar 

  14. A. V. Snegursky, F. F. Chipev, A. N. Zavilopulo, and O. B. Shpenik, Radiat. Phys. Chem. 76, 604 (2007).

    Article  ADS  Google Scholar 

  15. L. G. Christophorou and J. K. Olthoff, Phys. Chem. Ref. Data 29, 2667 (2002).

    Google Scholar 

  16. M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. J. Jensen, S. Koseki, N. Matsunaga, K. A. Nguyen, S. Su, T. L. Windus, M. Dupuis, and J. A. Montgomery, J. Comput. Chem. 14, 1347 (1993).

    Article  Google Scholar 

  17. W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133 (1965).

    Article  MathSciNet  ADS  Google Scholar 

  18. R. H. Hertwig and W. Koch, Chem. Phys. Lett. 268, 345 (1997).

    Article  ADS  Google Scholar 

  19. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  20. C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37, 785 (1988).

    Article  ADS  Google Scholar 

  21. J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992).

    Article  ADS  Google Scholar 

  22. T. H. Dunning, Jr., and P. J. Hay, Methods of Electronic Structure Theory in Applications of Electronic Structure Theory, Ed. by H. F. Schaefer III (Plenum, New York, 1977), Chap. 1, pp. 1–27.

    Chapter  Google Scholar 

  23. T. Helgaker, Chem. Phys. Lett. 182, 503 (1991).

    Article  ADS  Google Scholar 

  24. A. A. Radtsig and B. M. Smirnov, Reference Data on Atoms, Molecules, and Ions (Springer, Berlin, 1985).

    Book  Google Scholar 

  25. T. L. Cottrell, The Strengths of Chemical Bonds, 2nd ed. (Butterworth, London, 1958); B. de B. Darwent, National Standard Reference Data, Ser. NBS, No. 31 (Washington, 1970).

    Google Scholar 

  26. K. K. Irikura, J. Phys. Chem. Ref. Data 36, 389 (2007).

    Article  ADS  Google Scholar 

  27. E. Miyoshi, Y. Sakai, and S. Miyoshi, J. Chem. Phys. 88, 1470 (1988).

    Article  ADS  Google Scholar 

  28. S. G. Lias, J. E. Barmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G. Mallard, J. Phys. Chem. Ref. Data. Suppl. 17, 861 (1988).

    Google Scholar 

  29. S. G. Lias and J. F. Liebman, “Ion energetics data,” in NIST Chem. WebBook, NIST Standard Reference Database No. 69, Ed. by P. J. Lindstrom and W. G. Mallard (NIST, Gaithersburg, 1998). http://webbook.nist.gov

    Google Scholar 

  30. T. Kiang, R. C. Estler, and R. N. Zare, J. Chem. Phys. 70, 5925 (1979).

    Article  ADS  Google Scholar 

  31. V. Tarnovsky, H. Deutsch, K. I. Martus, and K. Becker, J. Chem. Phys. 109, 6596 (1998).

    Article  ADS  Google Scholar 

  32. M. Ito, M. Goto, H. Toyoda, and H. Sugai, Contrib. Plasma Phys. 35, 405 (1995).

    Article  ADS  Google Scholar 

  33. R. K. Asundi and J. D. Craggs, Proc. Phys. Soc. 83, 611 (1964).

    Article  ADS  Google Scholar 

  34. T. Stanski and B. Adamczyk, Int. J. Mass Spectrom. Ion Phys. 46, 31 (1983).

    Article  ADS  Google Scholar 

  35. D. Margreiter, G. Walder, H. Deutsch, H. U. Poll, C. Winkler, K. Stephan, and T. D. Märk, Int. J. Mass Spectrom. Ion Processes 100, 143 (1990).

    Article  ADS  Google Scholar 

  36. A. N. Zavilopulo, M. I. Mikita, A. N. Mylymko, and O. B. Shpenik, Tech. Phys. 58, 1251 (2013).

    Article  Google Scholar 

  37. M. E. Jacox, “Vibrational and electronic energy levels of polyatomic transient molecules,” in NIST Chem. WebBook, NIST Standard Reference Database No. 69, Ed. by P. J. Lindstrom and W. G. Mallard (NIST, Gaithersburg MD, 1998). http://webbook.nist.gov

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sh. Sh. Demesh.

Additional information

Original Russian Text © Sh.Sh. Demesh, A.N. Zavilopulo, O.B. Shpenik, E.Yu. Remeta, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 6, pp. 44–51.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demesh, S.S., Zavilopulo, A.N., Shpenik, O.B. et al. Fragment appearance energies in dissociative ionization of a sulfur hexafluoride molecule by electron impact. Tech. Phys. 60, 830–838 (2015). https://doi.org/10.1134/S1063784215060067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215060067

Keywords

Navigation