Skip to main content
Log in

Acoustic strength of water and effect of ultrasound on the liquid-vapor phase diagram

  • Acoustics, Acoustoelectronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The structure-time approach is used to develop an analytical model that makes it possible to predict the dependences of the acoustic cavitation threshold of water on temperature and background pressure. The calculated dependences are compared with the results of experiments carried out in the leading laboratories. It is demonstrated that the proposed approach allows the estimation of the effect of the acoustic field on the phase state of the substance under study. The calculated liquid-vapor phase curves for water in the presence of acoustic fields are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. G. Flynn, “Physics of acoustic cavitation in liquids,” in Physical Acoustics, Ed. by W. P. Mason (Academic, New York, 1964), Vol. 1.

    Google Scholar 

  2. A. S. Besov, V. K. Kedrinskii, N. F. Morozov, Yu. V. Petrov, and A. A. Utkin, Dokl. Phys. 46, 363 (2001).

    Article  ADS  Google Scholar 

  3. G. A. Volkov, A. A. Gruzdkov, and Yu. V. Petrov, Acoust. Phys. 53, 119 (2007).

    Article  ADS  Google Scholar 

  4. Yu. V. Petrov and E. V. Sitnikova, Tech. Phys. 49, 57 (2004).

    Article  Google Scholar 

  5. V. A. Bratov, A. A. Gruzdkov, S. I. Krivosheev, and Yu. V. Petrov, Dokl. Phys. 49, 338 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  6. A. N. Berezkin, S. I. Krivosheev, Yu. V. Petrov, and A. A. Utkin, Dokl. Phys. 45, 617 (2000).

    Article  ADS  Google Scholar 

  7. A. A. Gruzdkov and Yu. V. Petrov, Tech. Phys. 53, 291 (2008).

    Article  Google Scholar 

  8. Yu. V. Petrov and Y. V. Sitnikova, Tech. Phys. 50, 1034 (2005).

    Article  Google Scholar 

  9. Yu. V. Petrov, Proc. Mater. Sci. 3, 467 (2014).

    Article  Google Scholar 

  10. F. Caupin and E. Herbert, C. R. Physique 7, 1000 (2006).

    Article  ADS  Google Scholar 

  11. K. B. Bader, J. L. Raymond, J. Mobley, C. C. Church, and D. F. Gaitan, J. Acoust. Soc. Am. 132, 728 (2012).

    Article  ADS  Google Scholar 

  12. A. Yu. Kuksin, G. E. Norman, V. V. Pisarev, V. V. Stegailov, and A. V. Yanilkin, Teplofiz. Vys. Temp. 48, 536 (2010).

    Google Scholar 

  13. V. G. Baidakov and A. M. Kaverin, J. Phys.: Condens. Matter. 21, 1 (2009).

    Google Scholar 

  14. E. Hebert, S. Balibar, and F. Caupin, Phys. Rev. E 74, 041603 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Volkov.

Additional information

Original Russian Text © G.A. Volkov, Yu.V. Petrov, A.A. Gruzdkov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 5, pp. 123–126.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Volkov, G.A., Petrov, Y.V. & Gruzdkov, A.A. Acoustic strength of water and effect of ultrasound on the liquid-vapor phase diagram. Tech. Phys. 60, 753–756 (2015). https://doi.org/10.1134/S1063784215050278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215050278

Keywords

Navigation