Advertisement

Technical Physics

, Volume 60, Issue 5, pp 753–756 | Cite as

Acoustic strength of water and effect of ultrasound on the liquid-vapor phase diagram

  • G. A. Volkov
  • Yu. V. Petrov
  • A. A. Gruzdkov
Acoustics, Acoustoelectronics
  • 43 Downloads

Abstract

The structure-time approach is used to develop an analytical model that makes it possible to predict the dependences of the acoustic cavitation threshold of water on temperature and background pressure. The calculated dependences are compared with the results of experiments carried out in the leading laboratories. It is demonstrated that the proposed approach allows the estimation of the effect of the acoustic field on the phase state of the substance under study. The calculated liquid-vapor phase curves for water in the presence of acoustic fields are presented.

Keywords

Cavitation Acoustic Wave Acoustic Field Phase Curve Dynamic Strength 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. G. Flynn, “Physics of acoustic cavitation in liquids,” in Physical Acoustics, Ed. by W. P. Mason (Academic, New York, 1964), Vol. 1.Google Scholar
  2. 2.
    A. S. Besov, V. K. Kedrinskii, N. F. Morozov, Yu. V. Petrov, and A. A. Utkin, Dokl. Phys. 46, 363 (2001).CrossRefADSGoogle Scholar
  3. 3.
    G. A. Volkov, A. A. Gruzdkov, and Yu. V. Petrov, Acoust. Phys. 53, 119 (2007).CrossRefADSGoogle Scholar
  4. 4.
    Yu. V. Petrov and E. V. Sitnikova, Tech. Phys. 49, 57 (2004).CrossRefGoogle Scholar
  5. 5.
    V. A. Bratov, A. A. Gruzdkov, S. I. Krivosheev, and Yu. V. Petrov, Dokl. Phys. 49, 338 (2004).CrossRefADSMathSciNetGoogle Scholar
  6. 6.
    A. N. Berezkin, S. I. Krivosheev, Yu. V. Petrov, and A. A. Utkin, Dokl. Phys. 45, 617 (2000).CrossRefADSGoogle Scholar
  7. 7.
    A. A. Gruzdkov and Yu. V. Petrov, Tech. Phys. 53, 291 (2008).CrossRefGoogle Scholar
  8. 8.
    Yu. V. Petrov and Y. V. Sitnikova, Tech. Phys. 50, 1034 (2005).CrossRefGoogle Scholar
  9. 9.
    Yu. V. Petrov, Proc. Mater. Sci. 3, 467 (2014).CrossRefGoogle Scholar
  10. 10.
    F. Caupin and E. Herbert, C. R. Physique 7, 1000 (2006).CrossRefADSGoogle Scholar
  11. 11.
    K. B. Bader, J. L. Raymond, J. Mobley, C. C. Church, and D. F. Gaitan, J. Acoust. Soc. Am. 132, 728 (2012).CrossRefADSGoogle Scholar
  12. 12.
    A. Yu. Kuksin, G. E. Norman, V. V. Pisarev, V. V. Stegailov, and A. V. Yanilkin, Teplofiz. Vys. Temp. 48, 536 (2010).Google Scholar
  13. 13.
    V. G. Baidakov and A. M. Kaverin, J. Phys.: Condens. Matter. 21, 1 (2009).Google Scholar
  14. 14.
    E. Hebert, S. Balibar, and F. Caupin, Phys. Rev. E 74, 041603 (2006).CrossRefADSGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • G. A. Volkov
    • 1
    • 2
  • Yu. V. Petrov
    • 1
    • 2
  • A. A. Gruzdkov
    • 1
    • 3
  1. 1.St. Petersburg State UniversityPeterhof, St. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of Sciences, Vasil’evskii OstrovSt. PetersburgRussia
  3. 3.St. Petersburg State Technological Institute (Technical University)St. PetersburgRussia

Personalised recommendations