Skip to main content
Log in

Influence of vibrational relaxation on perturbations in a shock layer on a plate

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The influence of excitation of molecular vibrational degrees of freedom on the mean flow and perturbation development in a hypersonic (M = 6–14) viscous shock layer is studied. The layer originates on a plate placed in a flow of air, carbon dioxide, or their mixture at high stagnation temperatures (2000–3000 K). The mean flow and pressure pulsation on the surface of the plate are measured in an IT-302M pulsed wind tunnel (Khristianovich Institute of Theoretical and Applied Mechanics, Siberian Branch, Russian Academy of Sciences). Numerical simulation is carried out in terms of a model of a thermally perfect gas using the ANSYS Fluent program package based on solving nonstationary two-dimensional Navier-Stokes equations. External flow perturbations are introduced into the computational domain in the form of plane monochromatic acoustic waves using UDF modules built in the computational code. It is shown that the excitation of vibrational degrees of freedom in carbon dioxide molecules considerably influences the position of the head wave and intensifies perturbations in contrast to air in which the fraction of vibrationally excited molecules is low at the same parameters of the oncoming low. The influence of the excitation of vibrational degrees of freedom is studied both for equilibrium gas and for a vibrationally nonequilibrium gas. Nonequilibrium vibrational degrees of freedom are simulated using a two-temperature model of relaxation flows in which the time variation of the vibrational energy is described by the Landau-Teller equation with regard to a finite time of energy exchange between vibrational and translational-rotational degrees of freedom of molecules. It is found that the vibrational nonequilibrium has a damping effect on perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Osipov and A. V. Uvarov, Sov. Phys. Usp. 35, 903 (1992).

    Article  ADS  Google Scholar 

  2. G. A. Tirskii, Modern Gas-Dynamic and Physicochemical Models in Problems of Hypersonic Aerodynamics and Heat Transfer: Collecion of Scientific Works, Ed. by L.I. Sedov (MGU, Moscow, 1994), Part 1, pp. 9–43.

  3. E. V. Stupochenko, S. A. Losev, and A. I. Osipov, Relaxation Processes in Shock Waves (Nauka, Moscow, 1965).

    Google Scholar 

  4. N. E. Afonina and V. G. Gromov, Aeromekh. Gaz. Din., No. 2, 35 (2001).

    Google Scholar 

  5. V. V. Lunev, Real Gas Flows with High Velocities (CRC, Boka Raton, 2009)

    Book  Google Scholar 

  6. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967).

    Google Scholar 

  7. Yu. D. Shevelev and N. G. Syzranova, Fiz.-Khim. Kinet. Gaz. Din. 5 (2007). http://www.chemphys.edu.ru/pdf/2007-12-17-001.pdf

  8. M. M. Golomazov, Fiz.-Khim. Kinet. Gaz. Din. 6 (2008); http://www.chemphys.edu.ru/pdf/2008-10-23-0021.pdf

  9. E. V. Kustova, E. A. Nagnibeda, Yu. D. Shevelev, and N. G. Syzranova, Fiz.-Khim. Kinet. Gaz. Din. 6 (2008); http://www.chemphys.edu.ru/pdf/2008-04-04-001.pdf

  10. A. Viviani and G. Pezzella, Numerical Simulations-Examples and Applications in Computational Fluid Dynamics (In Tech, 2012), pp. 123–154.

    Google Scholar 

  11. L. M. Mack, AIAA J. 13, 278 (1975).

    Article  ADS  Google Scholar 

  12. S. G. Mironov and A. A. Maslov, J. Fluid Mech. 412, 259 (2000).

    Article  ADS  MATH  Google Scholar 

  13. D. Bountin, A. Shiplyuk, and A. Maslov, J. Fluid Mech. 611, 427 (2008).

    Article  ADS  MATH  Google Scholar 

  14. A. A. Maslov, T. V. Poplavskaya, and I. S. Tsyryul’nikov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 43 (2010).

    Google Scholar 

  15. H. G. Hornung, P. H. Adam, P. Germain, K. Fujii, and A. Rasheed, in Proceedings of the 9th Asian Congress of Fluid Mechanics, Isfahan, Iran, 2002.

  16. P. Germain and H. G. Hornung, Exp. Fluids 22, 183 (1997).

    Article  Google Scholar 

  17. P. Adam and H. G. Hornung, J. Spacecr. Rockets 34, 614 (1997).

    Article  ADS  Google Scholar 

  18. M. R. Malik and J. D. Anderson, Phys. Fluids A 3, 803 (1991).

    Article  ADS  MATH  Google Scholar 

  19. M. L. Hadson, N. Chockani, and G. V. Candler, AIAA J. 35, 958 (1997).

    Article  ADS  Google Scholar 

  20. H. B. Johnson, T. Seipp, and G. V. Candler, Phys. Fluids 10, 2676 (1998).

    Article  ADS  Google Scholar 

  21. F. P. Bertolotti, J. Fluid Mech. 372, 93 (1998).

    Article  ADS  MATH  MathSciNet  Google Scholar 

  22. K. Fujii and H. G. Hornung, AIAA J. 41, 1282 (2003).

    Article  ADS  Google Scholar 

  23. L. Massa, J. Fluid Mech. 757, 403 (2014).

    Article  ADS  MathSciNet  Google Scholar 

  24. I. A. Leyva, S. Laurence, W.-K. Beierholm, and H. G. Hornung, AIAA Pap. 2009-1287 (2009).

    Google Scholar 

  25. Yu. N. Grigor’ev and I. V. Ershov, Stability of Relaxing Molecular Gas Flows (SO RAN, Novosibirsk, 2012).

    Google Scholar 

  26. J. D. Anderson, Hypersonic and High Temperature Gas Dynamics (McGraw-Hill, New York, 1989).

    Google Scholar 

  27. B. F. Gordiets, A. I. Osipov, and L. A. Shelepin, Kinetic Processes in Gases and Molecular Lasers (Gordon and Breach, New York, 1987).

    Google Scholar 

  28. S. A. Losev, Gasdynamic Lasers (Nauka, Moscow, 1971).

    Google Scholar 

  29. R. N. Shvarts, Z. I. Slavskii, and K. F. Gertsfel’d, Gas Dynamics and Heat Transfer in Chemical Reactions (Nauka, Moscow, 1962), pp. 399–420.

    Google Scholar 

  30. Physical and Chemical Processes in Gas Dynamics, Ed. by G. G. Chernyi and S. A. Losev (Mosk. Gos. Univ., Moscow, 1995).

    Google Scholar 

  31. B. F. Gordiets and S. A. Zhdanok, Nonequilibrium Vibrational Kinetics, Ed. by M. Capitelli (Springer, Berlin, 1986), pp. 61–103.

  32. S. V. Kirilovskii, T. V. Poplavskaya, and I. S. Tsyryul’nikov, Mat. Model. 25(9), 32 (2013).

    MathSciNet  Google Scholar 

  33. N. B. Vargaftik, Tables of the Thermophysical Properties of Liquids and Gases: A Handbook (Halsted, New York, 1975).

    Book  Google Scholar 

  34. M. Camac, Fundamental Phenomena in Hypersonic Flow (Cornell Univ., Ithaka, 1996), pp. 195–218.

    Google Scholar 

  35. Yu. V. Gromyko, A. A. Maslov, A. A. Sidorenko, P. A. Polivanov, and I. S. Tsyryul’nikov, Vestn. Novosibirsk. Gos. Univ., Ser: Fiz. 6(2), 10 (2011).

    Google Scholar 

  36. I. V. Egorov, V. G. Sudakov, and A. V. Fedorov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 6, 33 (2004).

    Google Scholar 

  37. I. V. Egorov, V. G. Sudakov, and A. V. Fedorov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 1, 42 (2006).

    Google Scholar 

  38. X. Zong, AIAA Pap. 2000-0531 (2000).

    Google Scholar 

  39. Y. Ma and X. Zhong, AIAA Pap 2001-0892.

  40. A. N. Kudryavtsev, S. G. Mironov, T. V. Poplavskaya, and I. S. Tsyrsul’nikov, Prikl. Mekh. Tekh. Fiz. 47(5), 3 (2006).

    MATH  Google Scholar 

  41. A. A. Maslov, S. G. Mironov, A. N. Kudryavtsev, T. V. Poplavskaya, and I. S. Tsyryulnikov, J. Fluid Mech. 650, 81 (2010).

    Article  ADS  MATH  Google Scholar 

  42. J. Laufer, Phys. Fluids 7, 1191 (1964).

    Article  ADS  MATH  Google Scholar 

  43. S. A. Gaponov and A. A. Maslov, Development of Disturbances in Compressible Flows (Nauka, Novosibirsk, 1980).

    Google Scholar 

  44. A. A. Maslov, A. D. Kosinov, and S. G. Shevelkov, J. Fluid Mech. 219, 621 (1990).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Poplavskaya.

Additional information

Original Russian Text © S.V. Kirilovskiy, A.A. Maslov, T.V. Poplavskaya, I.S. Tsyryul’nikov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 5, pp. 12–22.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirilovskiy, S.V., Maslov, A.A., Poplavskaya, T.V. et al. Influence of vibrational relaxation on perturbations in a shock layer on a plate. Tech. Phys. 60, 645–655 (2015). https://doi.org/10.1134/S1063784215050114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215050114

Keywords

Navigation