Skip to main content
Log in

Nature of the adhesion bond between epoxy adhesive and titanium

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The time dependence of the potential difference that appears between two VT6 titanium alloy plates separated by a mixture of epoxy resin with an epoxy hardener is studied. One of the plates is placed in epoxy resin until equilibrium is established, and the second plate is coated with an as-prepared mixture of epoxy resin and a hardener. It is found that the potential difference decreases in time because of charge transfer by Ti2+ ions through epoxy resin. Photoluminescence and infrared absorption spectra of epoxy adhesive on the VT6 alloy surface are recorded. Their analysis shows that the Ti2+ ions having penetrated into the as-prepared mixture of epoxy resin and a hardener interact with CN groups in adhesive molecules to form coordination compounds. As a result, a diffusion layer saturated with coordination compounds forms at the alloy/adhesive interface, which leads to an increase in the strength of the adhesive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. A. Starostina and O. V. Stoyanov, Acid-Base Interactions and Adhesion in Metal-Polymeric Systems (KGTU, Kazan’, 2010).

    Google Scholar 

  2. T. Semoto, Y. Tsuji, and K. Yoshizawa, Bull. Chem. Soc. Jpn. 85, 672 (2012).

    Article  Google Scholar 

  3. He Peigang, Ke Chen, Bin Yu, Chee Yoon Yue, and Jinglei Yang, Compos. Sci. Technol. 82, 15 (2013).

    Article  Google Scholar 

  4. V. I. Vettegren’, A. Ya. Bashkarev, and V. A. Sytov, Tech. Phys. Lett. 30, 99 (2004).

    Article  ADS  Google Scholar 

  5. V. A. Sytov, V. V. Sytov, and V. I. Vettegren’, Izv. St. Petersb. Gos. Tekh. Inst., No. 21(47), 102 (2013).

    Google Scholar 

  6. K. S. Krasnov, N. K. Vorob’ev, I. N. Godnev, V. P. Va- sil’eva, V. P. Vasil’ev, V. L. Kiseleva, K. N. Belonogov, and V. P. Gostikin, Physical Chemistry, Vol. 2: Electrochemistry. Chemical Kinetics and Catalysis (Vysshaya Shkola, Moscow, 2001).

    Google Scholar 

  7. V. V. Skorchelleti, Theoretical Electrochemistry (Goskhimizdat, Leningrad, 1959).

    Google Scholar 

  8. J. L. Crossland and D. R. Tyler, Coord. Chem. Rev. 254, 1883 (2010).

    Article  Google Scholar 

  9. I. Hamerton, B. J. Howli, and P. Jepson, Coord. Chem. Rev. 224, 67 (2002).

    Article  Google Scholar 

  10. R. H. Crabtree, The Organometallic Chemistry of the Transition Metals (Wiley, Yale New Haven, 2005).

    Book  Google Scholar 

  11. V. I. Vettegren’, R. I. Mamalimov, A. V. Savitskii, I. P. Shcherbakov, V. V. Sytov, and V. A. Sytov, Tech. Phys. 59, 441 (2014).

    Article  Google Scholar 

  12. O. Madelung, Festkorpertheorie (Springer, Berlin, 1972).

    Book  Google Scholar 

  13. V. I. Vettegren’ and I. I. Novak, Sov. Phys. Solid State 15, 957 (1973).

    Google Scholar 

  14. Grades of Steel and Alloys. www.splav.kharkov.com

  15. N. J. Turro, Modern Molecular Photochemistry (Columbia Univ. Sci., Mill Valley, 1991).

    Google Scholar 

  16. E. C. Buruiana, A. L. Chibac, V. Melinte, and T. Buruiana, Chem. Sci. 125, 193 (2013).

    Article  Google Scholar 

  17. M. Born and E. Wolf, Principles of Optics (Pergamon, Oxford, 1970).

    Google Scholar 

  18. R. C. M. Sales and D. D. Brunelli, Mater. Res. 8, 299 (2005).

    Article  Google Scholar 

  19. M. A. Rawashdeh-Omary, M. D. Rashdan, S. Dharanipathi, O. Elbjeirami, P. Rameshb, and H. V. Rasika Dias, Chem. Commun. 47, 1160 (2011).

    Article  Google Scholar 

  20. G. Nikolic, S. Zlatkovic, M. Cakic, S. Cakic, C. Lacnjevac, and Z. Rajic, Sensors 10, 684 (2010).

    Article  Google Scholar 

  21. K. E. Chike, M. L. Murick, R. E. Lyon, and S. M. Angel, Appl. Spectrosc. 47, 1631 (1993).

    Article  ADS  Google Scholar 

  22. G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, Chichester, 2004).

    Google Scholar 

  23. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (Wiley, New York, 1957).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Vettegren’.

Additional information

Original Russian Text © V.I. Vettegren’, A.Ya. Bashkarev, R.I. Mamalimov, A.V. Savitskii, I.P. Shcherbakov, V.A. Sytov, V.V. Sytov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 2, pp. 88–93.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vettegren’, V.I., Bashkarev, A.Y., Mamalimov, R.I. et al. Nature of the adhesion bond between epoxy adhesive and titanium. Tech. Phys. 60, 246–251 (2015). https://doi.org/10.1134/S1063784215020231

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215020231

Keywords

Navigation