Skip to main content
Log in

Compaction and elastic unloading of nanopowders in terms of granular dynamics

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The behavior of nanopowders is simulated by a granular dynamics method. The elastic interaction of individual particles is described in terms of the rod model of contact, which is the generalization of the classical Hertz law and can be applied in the case of relatively strong particle deformation. The processes of uniaxial compression/tension in a rigid matrix are analyzed. The calculated data on the elastic properties of model systems are compared to the experimental data obtained for oxide nanopowders. The simulation of unloading (tension) makes it possible to separate the plastic irreversible part and the elastic part in the total strain of a powder body. The effect of the particle size on the elastic properties and the final density of the powder compact is studied, and the residual lateral stresses in powder compacts after the removal of an axial load and the maximum oxide nanopowder densities reached at high pressures are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. B. Shtern, G. G. Serdyuk, L. A. Maksimenko, Yu. V. Trukhan, and Yu. M. Shulyakov, Phenomenological Theory of Pressing of Powders (Naukova Dumka, Kiev, 1982).

    Google Scholar 

  2. G. Sh. Boltachev, N. B. Volkov, S. V. Dobrov, V. V. Ivanov, A. A. Nozdrin, and S. N. Paranin, Tech. Phys. 52, 1306 (2007).

    Article  Google Scholar 

  3. G. Sh. Boltachev, N. B. Volkov, V. V. Ivanov, and S. N. Paranin, J. Appl. Mech. Tech. Phys. 49, 336 (2008).

    Article  ADS  MATH  Google Scholar 

  4. E. A. Olevsky, A. A. Bokov, G. Sh. Boltachev, N. B. Volkov, S. V. Zayats, A. M. Ilyina, A. A. Nozdrin, and S. N. Paranin, Acta Mech. 224, 3177 (2013).

    Article  MATH  Google Scholar 

  5. V. P. Filonenko, L. G. Khvostantsev, R. Kh. Bagramov, L. I. Trusov, and V. I. Novikov, Poroshk. Metall., No. 4, 16 (1992).

    Google Scholar 

  6. G. Sh. Boltachev, N. B. Volkov, A. S. Kaigorodov, and V. P. Loznukho, Nanotechnol. Russ. 6, 639 (2011).

    Article  Google Scholar 

  7. I. Agnoli and J.-N. Roux, Phys. Rev. E 76, 061302 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  8. A. Balakrishnan, P. Pizette, C. L. Martin, S. V. Joshi, and B. P. Saha, Acta Mater. 58, 802 (2010).

    Article  Google Scholar 

  9. Yu. A. Kotov, J. Nanopart. Res. 5, 539 (2003).

    Article  Google Scholar 

  10. Yu. A. Kotov, V. V. Osipov, M. G. Ivanov, O. M. Samatov, V. V. Platonov, E. I. Azarkevich, A. M. Murzakaev, and A. I. Medvedev, Tech. Phys. 47, 1420 (2002).

    Article  Google Scholar 

  11. A. S. Kaigorodov, V. V. Ivanov, V. R. Khrustov, Yu. A. Kotov, A. I. Medvedev, V. V. Osipov, M. G. Ivanov, A. N. Orlov, and A. M. Murzakaev, J. Eur. Ceram. Soc. 27, 1165 (2007).

    Article  Google Scholar 

  12. V. G. Gryaznov, A. M. Kaprelov, and A. E. Romanov, Sov. Tech. Phys. Lett. 15, 39 (1989).

    Google Scholar 

  13. G. Sh. Boltachev and N. B. Volkov, Tech. Phys. Lett. 36, 823 (2010).

    Article  ADS  Google Scholar 

  14. G. Sh. Boltachev and N. B. Volkov, Tech. Phys. 56, 919 (2011).

    Article  Google Scholar 

  15. G. Sh. Boltachev and N. B. Volkov, Powder Metall. Met. Ceram. 51, 260 (2012).

    Article  Google Scholar 

  16. G. Sh. Boltachev, K. E. Lukyashin, V. A. Shitov, and N. B. Volkov, Phys. Rev. E 88, 012209 (2013).

    Article  ADS  Google Scholar 

  17. G. Sh. Boltachev, N. B. Volkov, and N. M. Zubarev, Int. J. Solids Struct. 49, 2107 (2012).

    Article  Google Scholar 

  18. J. Sh. Boltachev and V. Aleshin, Int. J. Solids Struct. 50, 2894 (2013).

    Article  Google Scholar 

  19. R. D. Mindlin, Trans. ASME, J. Appl. Mech. 16, 259 (1949).

    MATH  MathSciNet  Google Scholar 

  20. J. Jäger, Arch. Appl. Mech. 65, 478 (1995).

    Article  MATH  Google Scholar 

  21. A. I. Lur’e, Spatial Problems of Elasticity Theory (GITTL, Moscow, 1955).

    Google Scholar 

  22. E. Dintwa, E. Tijskens, and H. Ramon, Granul. Matter. 10, 209 (2008).

    Article  MATH  Google Scholar 

  23. A. V. Bekker, M. Pervukhina, V. Shulakova, S. Mayo, and M. B. Clennell, in Proceedings of the 2nd International Workshop on Rock Physics, Southampton, UK, 2013.

  24. R. M. McMeeking, G. Jefferson, and G. K. Haritos, Recent Developments in Computer Modeling of Powder Metallurgy Processes, Ed. by A. Zavaliangos and A. Laptev (IOS, Amsterdam, 2001), pp. 50–62.

  25. H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, Chem. Eng. Sci. 63, 5728 (2008).

    Article  Google Scholar 

  26. O. L. Khasanov, E. S. Dvilis, and V. M. Sokolov, Ogneup. Tekh. Keram., No. 1, 40 (2001).

    Google Scholar 

  27. O. L. Khasanov, E. S. Dvilis, and V. M. Sokolov, J. Eur. Ceram. Soc. 27, 749 (2007).

    Article  Google Scholar 

  28. Smart Imaging Technologies, http://smartimtech.com/modeling/methods-ev.htm; http://smartimtech.com/modeling/solutions/ex-spheres1.htm

  29. V. V. Ivanov and A. A. Nozdrin, Tech. Phys. Lett. 23, 527 (1997).

    Article  ADS  Google Scholar 

  30. A. A. Nozdrin, Perspekt. Mater., No. 6, 79 (2007).

    Google Scholar 

  31. G. Sh. Boltachev, K. A. Nagayev, S. N. Paranin, A. V. Spirin, and N. B. Volkov, Magnetic Pulsed Compaction of Nanosized Powders (Nova Science, New York, 2010).

    Google Scholar 

  32. O. L. Khasanov, E. S. Dvilis, and Z. G. Bikbaeva, Methods of Compaction and Consolidation of Nanostructure Materials and Products: Tutorial (BINOM, Lab. Znanii, Moscow, 2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Sh. Boltachev.

Additional information

Original Russian Text © G.Sh. Boltachev, N.B. Volkov, E.S. Dvilis, O.L. Khasanov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 2, pp. 94–101.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boltachev, G.S., Volkov, N.B., Dvilis, E.S. et al. Compaction and elastic unloading of nanopowders in terms of granular dynamics. Tech. Phys. 60, 252–259 (2015). https://doi.org/10.1134/S1063784215020048

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215020048

Keywords

Navigation