Skip to main content
Log in

Stable overload conditions of high-temperature superconductors at alternating current injection

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The stability of alternating current injected into a high-temperature superconductor or into a current-carrying element on its basis is studied under weak cooling. The stability conditions of the current varying with time by a sinusoidal law are studied versus its frequency. It is shown that before unstable states set in, the peak values of the electric field intensity, current, and temperature in the superconductor are higher than the values determining a thermal electrodynamic stability boundary of the current permanently flowing through the superconductor—the so-called thermal quench current. It is found that ultimate stable alternating currents cause high stable thermal losses in superconductors; these losses being not considered in the modern theory of losses. Such stable conditions can be referred to as overload conditions. Analysis shows that there are characteristic times determining the time intervals within which alternating current is stable under overload conditions. Main thermoelectrodynamic mechanisms behind the existence of these intervals are formulated. They explain why the superconductor stable overheating and induced electric field reach high values before the injected alternating current becomes unstable. The existence of overload conditions considerably extends the application area of high-temperature superconductors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Bird, S. Bole, and Y. M. Eyssa, IEEE Trans Appl Supercond. 10, 439 (2000).

    Article  Google Scholar 

  2. M. S. Newson, D. T. Ryan, M. N. Wilson, et al., IEEE Trans. Appl. Supercond. 12, 725 (2002).

    Article  Google Scholar 

  3. K. Watanabe, G. Nishijima, S. Awaji, et al., Appl. Phys. Express 1, 101703 (2008).

    Article  ADS  Google Scholar 

  4. K. Watanabe, S. Awaji, G. Nishijima, et al., Appl. Phys. Express 2, 111301 (2009).

    Google Scholar 

  5. S. S. Kalsi, D. Aized, B. Connor, et al., IEEE Trans Appl Supercond. 7, 971 (1997).

    Article  Google Scholar 

  6. H. Kumara, H. Kitaguchi, K. Togano, et al., Cryogenics 38, 163 (1998).

    Article  ADS  Google Scholar 

  7. A. L. Rakhmanov, V. S. Vysotsky, Yu. Ilyin, et al., Cryogenics 40, 19 (2000).

    Article  ADS  Google Scholar 

  8. V. R. Romanovskii and K. Watanabe, Superconducting Magnets and Superconductivity, Ed. by H. Tovar and J. Fortier (Nova Science, New York, 2009), pp. 293–399.

  9. V. R. Romanovskii, Superconductivity: Theory, Materials and Applications, Ed. by V. R. Romanovskii (Nova Science, New York, 2012), pp. 111–198.

  10. Seong-Woo Yim, Hyo-Sang Choi, Ok-Bae Hyun, et al., Appl. Phys. Express 13, 2968 (2003).

    Google Scholar 

  11. Y. S. Cha, D. J. Evans, and J. R. Hull, IEEE Trans. Appl. Supercond. 9, 1320 (1999).

    Article  Google Scholar 

  12. S. Stavrev, B. Dutoit, and C. Friend, Physica C 339, 69 (2000).

    Article  ADS  Google Scholar 

  13. K. Tasaki, T. Kuriyama, Y. Sumiyoshi, et al., IEEE Trans. Appl. Supercond. 14, 731 (2004).

    Article  Google Scholar 

  14. A. Ishiyama, M. Yanai, T. Morisaki, et al., IEEE Trans. Appl. Supercond. 15, 1879 (2005).

    Article  Google Scholar 

  15. V. S. Vysotsky, V. E. Sytnikov, V. V. Repnikov, et al., IEEE Trans. Appl. Supercond. 15, 1655 (2005).

    Article  Google Scholar 

  16. J. W. Lue, M. J. Gouge, and R. C. Duckworth, IEEE Trans. Appl. Supercond. 15, 1835 (2005).

    Article  Google Scholar 

  17. H. Miyazaki, S. Chigusa, I. Tanaka, et al., IEEE Trans. Appl. Supercond. 16, 1749 (2006).

    Article  Google Scholar 

  18. M. C. Ahn, S. E. Yang, and D. K. Park, Cryogenics 47, 425 (2007).

    Article  ADS  Google Scholar 

  19. S. S. Fetisov, V. S. Vysotsky, and V. E. Sytnikov, IEEE Trans. Appl. Supercond. 19, 2411 (2009).

    Article  ADS  Google Scholar 

  20. L. Dresner, Cryogenics 33, 900 (1993).

    Article  ADS  Google Scholar 

  21. H. Lim and Y. Iwasa, Cryogenics 37, 789 (1997).

    Article  ADS  Google Scholar 

  22. P. F. Herrmann, C. Albrecht, J. Bock, et al., IEEE Trans. Appl. Supercond. 3, 876 (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. R. Romanovskii.

Additional information

Original Russian Text © V.R. Romanovskii, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 1, pp. 87–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Romanovskii, V.R. Stable overload conditions of high-temperature superconductors at alternating current injection. Tech. Phys. 60, 86–95 (2015). https://doi.org/10.1134/S106378421501020X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S106378421501020X

Keywords

Navigation