Skip to main content
Log in

Intense shock waves and shock-compressed gas flows in the channels of rail accelerators

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Shock wave generation and shock-compressed gas flows attendant on the acceleration of an striker-free plasma piston in the channels of electromagnetic rail accelerators (railguns) are studied. Experiments are carried out in channels filled with helium or argon to an initial pressure of 25–500 Torr. At a pressure of 25 Torr, Mach numbers equal 32 in argon and 16 in helium. It is found that with the initial currents and gas initial densities in the channels being the same, the shock wave velocities in both gases almost coincide. Unlike standard shock tubes, a high electric field (up to 300 V/cm) present in the channel governs the motion of a shock-compressed layer. Once the charged particle concentration behind the shock wave becomes sufficiently high, the field causes part of the discharge current to pass through the shock-compressed layer. As a result, the glow of the layer becomes much more intense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ion Injectors and Plasma Accelerators, Ed. by A. I. Morozov and N. N. Semashko (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  2. G. A. Luk’yanov, Supersonic Plasmas Jets (Mashinostroenie, Leningrad, 1985).

    Google Scholar 

  3. B. G. Zhukov, B. I. Reznikov, R. O. Kurakin, and S. I. Rozov, Tech. Phys. 52, 865 (2007).

    Article  Google Scholar 

  4. S. V. Bobashev, B. G. Zhukov, R. O. Kurakin, S. A. Ponyaev, B. I. Reznikov, and S. I. Rozov, Tech. Phys. Lett. 36, 72 (2010).

    Article  ADS  Google Scholar 

  5. S. V. Bobashev, B. G. Zhukov, R. O. Kurakin, S. A. Ponyaev, B. I. Reznikov, and S. I. Rozov, Tech. Phys. 55, 1754 (2010).

    Article  Google Scholar 

  6. S. V. Bobashev, B. G. Zhukov, R. O. Kurakin, S. A. Ponyaev, B. I. Reznikov, S. I. Rozov, and A. I. Sedov, in Proceedings of the 7th International Conference on Plasma Physics and Plasma Technology (PPPT-7), Minsk, 2012, Vol. 1, pp. 94–97.

  7. A. L. Velikovich and M. A. Liberman, Physics of Shock Waves in Gases and Plasmas (Springer, Berlin, 1986).

    Google Scholar 

  8. M. A. Tsikulin and E. G. Popov, Radiative Properties of Shock Waves in Gases (Nauka, Moscow, 1977).

    Google Scholar 

  9. S. V. Bobashev, B. G. Zhukov, R. O. Kurakin, S. A. Ponyaev, and B. I. Reznikov, Tech. Phys. Lett. 40, (2014) (in press).

  10. B. I. Reznikov, S. V. Bobashev, B. G. Zhukov, R. O. Kurakin, S. A. Ponyaev, and S. I. Rozov, Tech. Phys. 59, 499 (2014).

    Article  Google Scholar 

  11. V. K. Gryaznov, I. L. Iosilevskii, and V. E. Fortov, Prikl. Mekh. Tekh. Fiz., No. 3, 70 (1973).

    Google Scholar 

  12. G. I. Kozlov and E. L. Stupitskii, Tables of Thermodynamic Parameters of Argon and Xenon behind an Incident and Reflected Shock Waves, Preprint IPM AN SSSR (Inst. Prikl. Mekh. AN SSSR, Moscow, 1969).

    Google Scholar 

  13. V. S. Vorob’ev and A. L. Khomkin, Teplofiz. Vys. Temp. 15, 188 (1977).

    ADS  Google Scholar 

  14. G. A. Mesyats, Ectons in Vacuum Discharge: Breakdown, the Spark, and the Arc (Nauka, Moscow, 2000).

    Google Scholar 

  15. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991; Intellekt, Dolgoprudnyi, 2007).

    Book  Google Scholar 

  16. B. B. D’yakov and B. I. Reznikov, in Proceedings of the 1st All-Russia Seminar on Dynamics of High-Current Arc Discharge in Magnetic Field, Novosibirsk, 1990, pp. 38–68.

  17. V. V. Zhurin and O. K. Kostko, Teplofiz. Vys. Temp. 5(6), 166 (1967).

    Google Scholar 

  18. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Academic, New York, 1967).

    Google Scholar 

  19. V. E. Fortov and I. T. Yakubov, Physics of Nonideal Plasma (Hemisphere, New York, 1990).

    Google Scholar 

  20. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Substances (Nauka, Moscow, 1982), Vol. 4, Book 2, p. 559.

    Google Scholar 

  21. V. E. Fortov, A. G. Khrapak, and I. T. Yakubov, Physics of Nonideal Plasma (Fizmatlit, Moscow, 2004).

    Google Scholar 

  22. A. G. Khrapak and I. T. Yakubov, Electrons in Dense Gases and Plasma (Nauka, Moscow, 1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Zhukov.

Additional information

Original Russian Text © S.V. Bobashev, B.G. Zhukov, R.O. Kurakin, S.A. Ponyaev, B.I. Reznikov, K.V. Tverdokhlebov, 2015, published in Zhurnal Tekhnicheskoi Fiziki, 2015, Vol. 85, No. 1, pp. 39–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobashev, S.V., Zhukov, B.G., Kurakin, R.O. et al. Intense shock waves and shock-compressed gas flows in the channels of rail accelerators. Tech. Phys. 60, 40–47 (2015). https://doi.org/10.1134/S1063784215010053

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784215010053

Keywords

Navigation