Skip to main content
Log in

Operating stability of a self-breakdown spark-gap frequency switch rated at a voltage of 300 kV and a switched power of up to 450 J

  • Experimental Instruments and Technique
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A test bench for studying two-electrode spark gaps rated at a voltage of 300 kV and a pulse repetition rate of up to 10 Hz and operating in air at elevated pressure. The typical time of pulse charging of a capacitive storage in the bench equals about 100 μs. The object of investigation is a spark gap the operating stability of which at a level of 10% of the rate voltage is achieved by initiating a corona discharge at the prebreakdown stage. It is shown that unstable operation is due to the accumulation of nitrogen oxides in the gap. To maintain the oxide content at an acceptable level, continuous gas purging is applied and necessary gas flow rates are estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. A. Mesyats, Generation of High-Power Nanosecond Pulses (Sovetskoe Radio, Moscow, 1974).

    Google Scholar 

  2. B. M. Koval’chuk, V. V. Kremnev, and Yu. F. Potalitsyn, High-Current Nanosecond Commutators (Nauka, Novosibirsk, 1991).

    Google Scholar 

  3. J. A. Harrower, S. J. MacGregor, and F. A. Tuema, J. Phys. D: Appl. Phys. 32, 790 (1999).

    Article  ADS  Google Scholar 

  4. J. R. Beveridge, S. J. MacGregor, M. J. Given, I. V. Timoshkin, and J. M. Lehr, IEEE Trans. Dielectr. Electr. Insul. 16, 948 (2009).

    Article  Google Scholar 

  5. G. A. Mesyats, S. D. Korovin, A. V. Gunin, V. P. Gubanov, A. S. Stepchenko, D. M. Grishin, V. F. Landl, and P. I. Alekseenko, Laser Part. Beam 1, 197 (2003).

    ADS  Google Scholar 

  6. G. A. Mesyats, S. D. Korovin, V. V. Rostov, V. G. Shpak, and M. I. Yalandin, Proc. IEEE 92, 1166 (2004).

    Article  Google Scholar 

  7. Y. A. Andreev, V. P. Gubanov, A. M. Efremov, V. I. Koshelev, S. D. Korovin, B. M. Kovalchuk, V. V. Kremnev, V. V. Plisko, A. S. Stepchenko, and K. N. Sukhushin, Laser Part. Beams 21, 211 (2003).

    Article  ADS  Google Scholar 

  8. G. A. Mesyats and M. I. Yalandin, Phys. Usp. 48, 211 (2005).

    Article  ADS  Google Scholar 

  9. A. M. Efremov, B. M. Koval’chuk, and Yu. D. Korolev, Tech. Phys. 57, 478 (2012).

    Article  Google Scholar 

  10. B. M. Kovalchuk, A. V. Kharlov, E. V. Kumpyak, and V. A. Sinebrykhov, J. Instrum. 8, P09012 (2013).

    Article  Google Scholar 

  11. B. M. Kovalchuk, A. V. Kharlov, V. A. Vizir, E. V. Kumpyak, V. B. Zorin, and V. N. Kiselev, Rev. Sci. Instrum. 81, 103506 (2010).

    Article  ADS  Google Scholar 

  12. B. M. Koval’chuk, Yu. D. Korolev, and E. V. Kumpyak, Tech. Phys. 57, 1162 (2012).

    Article  Google Scholar 

  13. V. V. Appolonov, G. G. Baitsur, A. M. Prokhorov, and K. N. Firsov, Quantum Electron. 17(1), 76 (1987).

    ADS  Google Scholar 

  14. Yu. K. Stishkov, A. V. Samusenko, A. S. Subbotskii, and A. N. Kovalev, Tech. Phys. 55, 1569 (2010).

    Article  Google Scholar 

  15. G. Sh. Boltachev and N. M. Zubarev, Tech. Phys. 57, 1493 (2012).

    Article  Google Scholar 

  16. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, I. A. Shemyakin, A. A. Enenko, and I. B. Matveev, IEEE Trans. Plasma Sci. 37, 2314 (2009).

    Article  ADS  Google Scholar 

  17. Y. D. Korolev, O. B. Frants, V. G. Geyman, V. S. Kasyanov, and N. V. Landl, IEEE Trans. Plasma Sci. 40, 2951 (2012).

    Article  ADS  Google Scholar 

  18. Y. S. Akishev, M. E. Grushin, I. V. Kochetov, A. P. Napartovich, M. V. Pan’kin, and N. I. Trushkin, Plasma Phys. Rep. 26, 157 (2000).

    Article  ADS  Google Scholar 

  19. Y. D. Korolev, G. A. Mesyats, and A. M. Yarosh, High Energy Chem. 21, 389 (1987).

    Google Scholar 

  20. Y. D. Korolev, O. B. Frants, N. V. Landl, and A. I. Suslov, IEEE Trans. Plasma Sci. 40, 2837 (2012).

    Article  ADS  Google Scholar 

  21. T. Namihira, S. Tsukamoto, D. Y. Wang, S. Katsuki, R. Hackam, K. Okamoto, and H. Akiyama, IEEE Trans. Plasma Sci. 28, 109 (2000).

    Article  ADS  Google Scholar 

  22. S. Sakai, M. Matsuda, D. Wang, T. Namihira, H. Akiyama, K. Okamoto, and K. Toda, Acta Phys. Pol. A 115, 1104 (2009).

    Google Scholar 

  23. Y. D. Korolev, O. B. Frants, N. V. Landl, V. G. Geyman, A. G. Karengin, A. D. Pobereznikov, Y. Kim, L. A. Rosocha, and I. B. Matveev, IEEE Trans. Plasma Sci. 41, 3214 (2013).

    Article  ADS  Google Scholar 

  24. Y. D. Korolev, O. B. Frants, N. V. Landl, V. S. Kasyanov, S. I. Galanov, O. I. Sidorova, Y. Kim, L. A. Rosocha, and I. B. Matveev, IEEE Trans. Plasma Sci. 40, 535 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. D. Korolev.

Additional information

Original Russian Text © B.M. Koval’chuk, Yu.D. Korolev, E.V. Kumpyak, O.B. Frants, I.A. Shemyakin, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 12, pp. 137–144.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koval’chuk, B.M., Korolev, Y.D., Kumpyak, E.V. et al. Operating stability of a self-breakdown spark-gap frequency switch rated at a voltage of 300 kV and a switched power of up to 450 J. Tech. Phys. 59, 1874–1880 (2014). https://doi.org/10.1134/S1063784214120135

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214120135

Keywords

Navigation