Skip to main content
Log in

Advances in the study of striations in inert gases

  • Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We present a review of studies of striations in a dc discharge in inert gases over recent decades. Physical mechanisms of stratification are described for various discharge conditions. Main attention is paid to striations at low pressures and small currents (S, P, and R striations). The origin of these striations is associated with electron bunching in spatially periodic resonant fields. The idea of this mechanism and qualitative interpretation of the S and P striations based on the analytic theory are described in the pioneering work by L.D. Tsendin (1982). We describe the evolution of these ideas on quantitative level. New ideas concerning nonintegral resonances responsible for the formation of R striations are considered. The theory is compared with experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Pekarek, Sov. Phys. Usp. 11, 188 (1968).

    Article  ADS  Google Scholar 

  2. A. V. Nedospasov, Sov. Phys. Usp. 11, 174 (1968).

    Article  ADS  Google Scholar 

  3. N. L. Oleson and A. W. Cooper, Adv. Electron. Electron Phys. 24, 155 (1968).

    Article  Google Scholar 

  4. P. S. Landa, N. A. Miskinova, and Yu. V. Ponomarev, Sov. Phys. Usp. 23, 813 (1980).

    Article  ADS  Google Scholar 

  5. Yu. P. Raizer, Gas Discharge Physics (Springer, Berlin, 1991).

    Book  Google Scholar 

  6. V. A. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma (Energoatomizdat, Moscow, 1988).

    Google Scholar 

  7. V. A. Rozhansky and L. D. Tsendin, Transport Phenomena in Partially Ionized Plasma (Taylor, London-New-York, 2001).

    Google Scholar 

  8. A. A. Kudryavtsev, A. S. Smirnov, and L. D. Tsendin, Physics of Glow Discharge (Lan’, St. Petersburg, 2010).

    Google Scholar 

  9. B. S. Kerner and V. V. Osipov, Radiotekh. Elektron. (Moscow) 28, 132 (1983).

    ADS  Google Scholar 

  10. V. I. Kolobov, J. Phys. D: Appl. Phys. 39, R487 (2006).

    Article  ADS  Google Scholar 

  11. S. Pfau, A. Rutscher, and K. Wojaczek, Beitr. Plasmaphys. 9, 333 (1969).

    Article  Google Scholar 

  12. W. Pupp, Phys. Z. 33, 844 (1932).

    Google Scholar 

  13. K. Wojaczek, Beitr. Plasmaphys. 2, 1 (1962).

    Article  Google Scholar 

  14. K. Wojaczek, Beitr. Plasmaphys. 11, 335 (1971).

    Article  Google Scholar 

  15. L. D. Tsendin, Sov. Phys. Tech. Phys. 14, 1013 (1969).

    ADS  Google Scholar 

  16. L. D. Tsendin, Sov. Phys. Tech. Phys. 16, 1226 (1971).

    ADS  Google Scholar 

  17. R. R. Arslanbekov and V. I. Kolobov, IEEE Trans. Plasma Sci. 33, 354 (2005).

    Article  ADS  Google Scholar 

  18. V. I. Kolobov and R. R. Arslanbekov, IEEE Trans. Plasma Sci. 34, 895 (2006).

    Article  ADS  Google Scholar 

  19. Yu. B. Golubovskii and V. O. Nekuchaev, Zh. Tekh. Fiz. 52(4), 662 (1982).

    Google Scholar 

  20. Yu. B. Golubovskii and V. O. Nekuchaev, Zh. Tekh. Fiz. 52(5), 858 (1982).

    Google Scholar 

  21. Yu. B. Golubovskii and V. O. Nekuchaev, Zh. Tekh. Fiz. 52(5), 864 (1982).

    Google Scholar 

  22. Yu. B. Golubovskii, V. V. Kulikov, V. O. Nekuchaev, and M. B. Nemirovskaya, Radiotekh. Elektron. (Moscow) 30, 1159 (1985).

    Google Scholar 

  23. Yu. B. Golubovskii, V. I. Kolobov, and L. D. Tsendin, Zh. Tekh. Fiz. 56(1), 54 (1986).

    Google Scholar 

  24. Yu. B. Golubovskii, V. I. Kolobov, and V. V. Kulikov, Zh. Tekh. Fiz. 58(6), 1102 (1988).

    Google Scholar 

  25. L. D. Tsendin, Sov. J. Plasma Phys. 8, 96 (1982).

    ADS  Google Scholar 

  26. Yu. B. Golubovskii, V. I. Kolobov, and I. E. Suleimenov, Zh. Tekh. Fiz. 61(8), 57 (1991).

    Google Scholar 

  27. Yu. B. Golubovskii, V. I. Kolobov, V. O. Nekuchaev, and I. E. Suleimenov, Zh. Tekh. Fiz. 61(8), 62 (1991).

    Google Scholar 

  28. Yu. B. Golubovskii, V. A. Maiorov, V. O. Nekutchaev, J. Behnke, and J. F. Behnke, Phys. Rev. E 63, 036409 (2001).

    Article  ADS  Google Scholar 

  29. A. A. Zaitsev, I. A. Savchenko, and V. F. Makhrov, Radiotekh. Elektron. (Moscow) 15, 2650 (1970).

    Google Scholar 

  30. A. A. Zaitsev and I. A. Savchenko, Zh. Tekh. Fiz. 45, 1541 (1975).

    Google Scholar 

  31. Yu. B. Golubovskii, A. Yu. Skoblo, V. A. Maiorov, and V. O. Nekutchaev, Plasma Sources Sci. Technol. 11, 309 (2002).

    Article  ADS  Google Scholar 

  32. M. Novák, Czech. J. Phys., Sect. B 10, 954 (1960).

    Article  ADS  Google Scholar 

  33. V. Krejčí, K. Mašek, L. Láska, and V. Peřina, Beitr. Plasmaphys. 7, 413 (1967).

    Article  Google Scholar 

  34. V. Pe ina, Czech. J. Phys., Sect. B 26, 764 (1976).

    Article  Google Scholar 

  35. V. V. Il’inskii, “Investigation of ionization waves properties,” Candidate’s Dissertation in Mathematics and Physics (MGU, Moscow, 1979).

    Google Scholar 

  36. A. A. Zaitsev, V. V. Il’inskii, and I. A. Savchenko, Metrologiya, No. 3, 17 (1978).

    Google Scholar 

  37. Yu. B. Golubovskii, A. Yu. Skoblo, C. Wilke, R. V. Kozakov, J. Behnke, and V. O. Nekutchaev, Phys. Rev. E 72, 026414 (2005).

    Article  ADS  Google Scholar 

  38. A. Dinklage, B. Bruhn, H. Deutsch, P. Jonas, B.-P. Koch, and C. Wilke, Phys. Plasmas 5, 833 (1998).

    Article  ADS  Google Scholar 

  39. A. Dinklage and C. Wilke, Phys. Lett. A 277, 331 (2000).

    Article  ADS  Google Scholar 

  40. L. D. Tsendin, Plasma Sources Sci. Technol. 4, 200 (1995).

    Article  ADS  Google Scholar 

  41. V. I. Kolobov and V. A. Godyak, IEEE Trans. Plasma Sci. 23, 503 (1995).

    Article  ADS  Google Scholar 

  42. Encyclopedia of Low-Temperature Plasma, Ed. by V. E. Fortov (Nauka, Moscow, 2000), Introductory Volume, Book 2, pp. 5–47.

    Google Scholar 

  43. L. D. Tsendin, Plasma Sources Sci. Technol. 18, 014020 (2009).

    Article  ADS  Google Scholar 

  44. L. D. Tsendin, Phys. Usp. 53, 133 (2010).

    Article  ADS  Google Scholar 

  45. I. B. Bernstein and T. Holstein, Phys. Rev. 94, 1475 (1954).

    Article  ADS  MATH  Google Scholar 

  46. L. D. Tsendin, Sov. Phys. JETP 39, 805 (1974).

    ADS  Google Scholar 

  47. T. Ru i ka and K. Rohlena, Czech. J. Phys., Sect. B 22, 906 (1972).

    Article  ADS  Google Scholar 

  48. L. D. Tsendin, Sov. J. Plasma Phys. 8, 228 (1982).

    ADS  Google Scholar 

  49. L. D. Tsendin, Zh. Tekh. Fiz. 52, 635 (1982).

    Google Scholar 

  50. L. D. Tsendin, Zh. Tekh. Fiz. 52, 643 (1982).

    Google Scholar 

  51. V. A. Shveigert, Sov. J. Plasma Phys. 15, 714 (1989).

    Google Scholar 

  52. Yu. B. Golubovskii, I. A. Porokhova, J. Behnke, and V. O. Nekutchaev, J. Phys. D: Appl. Phys. 31, 2447 (1998).

    Article  ADS  Google Scholar 

  53. F. Sigeneger and R. Winkler, Contrib. Plasma Phys. 36, 551 (1996).

    Article  ADS  Google Scholar 

  54. F. Sigeneger, Yu. B. Golubovskii, I. A. Porokhova, and R. Winkler, Plasma Chem. Plasma Process. 18, 153 (1998).

    Article  Google Scholar 

  55. F. Sigeneger and R. Winkler, Plasma Chem. Plasma Process. 20, 429 (2000).

    Article  Google Scholar 

  56. Yu. B. Golubovskii, R. V. Kozakov, J. Behnke, C. Wilke, and V. O. Nekutchaev, Phys. Rev. E 68, 026404 (2003).

    Article  ADS  Google Scholar 

  57. S. W. Rayment and N. D. Twiddy, J. Phys. D: Appl. Phys. 2, 1747 (1969).

    Article  ADS  Google Scholar 

  58. K. F. Bessonova, O. N. Oreshak, E. P. Ostapchenko, and V. A. Stepanov, Zh. Tekh. Fiz. 41, 979 (1971).

    Google Scholar 

  59. S. W. Rayment, J. Phys. D: Appl. Phys. 7, 871 (1974).

    Article  ADS  Google Scholar 

  60. Yu. B. Golubovskii, V. O. Nekuchaev, N. S. Ponomarev, and I. A. Porokhova, Tech. Phys. 42, 997 (1997).

    Article  Google Scholar 

  61. Yu. B. Golubovskii, V. O. Nekuchaev, and N. S. Ponomarev, Tech. Phys. 43, 288 (1998).

    Article  Google Scholar 

  62. Yu. B. Golubovskii, R. V. Kozakov, C. Wilke, J. Behnke, and V. O. Nekutchaev, Plasma Sources Sci. Technol. 13, 135 (2004).

    Article  ADS  Google Scholar 

  63. Yu. B. Golubovskii, A. Yu. Skoblo, C. Wilke, R. V. Kozakov, and V. O. Nekuchaev, Plasma Sources Sci. Technol. 18, 045022 (2009).

    Article  ADS  Google Scholar 

  64. Yu. B. Golubovskii, V. I. Kolobov, and V. O. Nekuchaev, Phys. Plasmas 20, 101602 (2013).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Yu. Skoblo.

Additional information

Original Russian Text © Yu.B. Golubovskii, V.O. Nekuchaev, A.Yu. Skoblo, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 12, pp. 50–62.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubovskii, Y.B., Nekuchaev, V.O. & Skoblo, A.Y. Advances in the study of striations in inert gases. Tech. Phys. 59, 1787–1800 (2014). https://doi.org/10.1134/S1063784214120093

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214120093

Keywords

Navigation