Skip to main content
Log in

Changes in the structure and substructure of tungsten during irradiation by hydrogen plasma flows at the specific energy close to the heat loads on the ITER surface

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The changes in the structure, the substructure, and the state of stress in the surface layers of tungsten targets and the cracking processes in them are studied in model experiments on irradiation by a hydrogen plasma in a quasi-stationary plasma accelerator QSPA Kh-50, which adequately reproduces the energy density and the edge localized mode (ELM) time in ITER. The plasma heat load is up to 1 MJ m−2, the pulse duration is 0.25 ms, and the maximum number of irradiating pulses of 150. The development of residual macrostresses from compression to tension is analyzed by X-ray diffraction, and their relation to cracking is shown. Irradiation is found to increase the lattice parameter of tungsten in the undeformable section from a 0 ≈ 0.31642 ± 0.00001 (initial state) to 0.31645 ± 0.00001 nm. The changes in the coherent scattering region and microstrains are estimated. The role of point defects and their complexes in the irradiation-assisted processes is established. A qualitative model is proposed to explain these changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Loarte, G. Saibene, R. Sartori, et al., Plasma Phys. Controlled Fusion 45, 1549 (2003).

    Article  ADS  Google Scholar 

  2. A. Loarte, G. Saibene, R. Sartori, et. al., Phys. Scr. 128, 222 (2007).

    Article  Google Scholar 

  3. I. E. Garkusha, A. N. Bandura, O. V. Byrka, et al., J. Nucl. Mater. 337–330, R 707 (2005).

    Article  Google Scholar 

  4. V. I. Tereshin, V. V. Chebotarev, I. E. Garkusha, I. S. Landman, and V. A. Makhlaj, in Proceedings of the International Conference on Research and Applications of Plasmas Combined with the 4th German-Polish Conference on Plasma Diagnostics for Fusion and Applications and the 6th French-Polish Seminar on Thermal Plasma in Space and Laboratory (Plasma 2007), Greifswald, Germany 2007; AIP Conf. Proc. 993, 371 (2008).

    ADS  Google Scholar 

  5. I. E. Garkusha, A. N. Bandura, O. V. Byrka, V. V. Chebotarev, I. S. Landman, V. A. Makhlaj, S. Pestchanyi, and V. I. Tereshin, J. Nucl. Mater. 386–388, 127 (2009).

    Article  Google Scholar 

  6. I. E. Garkusha, I. S. Landman, J. Linke, V. A. Makhlaj, A. V. Medvedev, S. V. Malykhin, S. Peschanyi, G. Pintsuk, A. T. Pugachev, and V. I. Tereshin, J. Nucl. Mater. 415, 65 (2011).

    Article  ADS  Google Scholar 

  7. V. A. Makhlaj, I. E. Garkusha, S. V. Malykhin, A. T. Pugachov, I. Landman, J. Linke, S. Pestchanyi, V. V. Chebotarev, and V. I. Tereshin, Phys. Scr. 138, 014060 (2009).

    Article  Google Scholar 

  8. V. A. Makhlaj, I. E. Garkusha, S. V. Malykhin, A. T. Pugachov, I. Landman, J. Linke, N. N. Aksenov, N. V. Kulik, A. V. Medvedev, V. V. Chebotarev, and V. I. Tereshin, Probl. At. Sci. Technol., Ser.: Plasma Phys., No. 6 (16), 57 (2010).

    Google Scholar 

  9. I. E. Garkusha, N. N. Aksenov, A. A. Chuvilo, I. S. Landman, V. A. Makhlaj, S. V. Malykhin, A. T. Pugachev, and M. J. Sadowski, Nukleonika 57, 167 (2012).

    Google Scholar 

  10. M. V. Reshetnyak and O. V. Sobol’, Fiz. Inzh. Poverkhn. 6, 180 (2008).

    Google Scholar 

  11. V. I. Pinegin, A. A. Koz’ma, and M. Ya. Fuks, Zavod. Lab. 51(7), 27 (1985).

    Google Scholar 

  12. I. C. Noyan and I. B. Cohen, Residual Stress (Springer, New York, 1987).

    Book  Google Scholar 

  13. L. S. Palatnik, M. Ya. Fuks, and V. M. Kosevich, Mechanism of Formation and the Structure of Condensed Films (Nauka, Moscow, 1972).

    Google Scholar 

  14. L. V. Tikhonov, V. A. Kononenko, G. I. Prokopenko, and V. A. Rafalovskii, Structure and Properties of Metals and Alloys. Mechanical Properties of Metals and Alloys (Naukova Dumka, Kiev, 1986).

    Google Scholar 

  15. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-Ray and Electron-Optical Analysis (MISIS, Moscow, 1994).

    Google Scholar 

  16. M. A. Krivoglaz, X-Ray and Thermal Neutron Diffraction in Nonideal Crystals (Springer, Berlin, 1996).

    Book  Google Scholar 

  17. L. I. Gladkikh, S. V. Malykhin, and A. T. Pugachev, Theory and Experiment (NTU KhPI, Kharkiv, 2006).

    Google Scholar 

  18. T. Hirai and G. Pintsuk, Fusion Eng. Des. 82, 389 (2007).

    Article  Google Scholar 

  19. V. A. Makhlaj, I. E. Garkusha, N. N. Aksenova, M. S. Ladygina, I. Landman, J. Linke, S. V. Malykhin, S. Pestchanyi, A. T. Pugachev, M. J. Sadowski, and E. Skladnik-Sadowska, Phys. Scr. 145, 014061 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. E. Garkusha.

Additional information

Original Russian Text © I.E. Garkusha, S.V. Malykhin, V.A. Makhlai, A.T. Pugachev, S.V. Bazdyrieva, N.N. Aksenov, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 11, pp. 41–46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garkusha, I.E., Malykhin, S.V., Makhlai, V.A. et al. Changes in the structure and substructure of tungsten during irradiation by hydrogen plasma flows at the specific energy close to the heat loads on the ITER surface. Tech. Phys. 59, 1620–1625 (2014). https://doi.org/10.1134/S1063784214110097

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214110097

Keywords

Navigation