Skip to main content
Log in

Magnet-metal-piezoelectric magnetic sensor with the highest magnetoelectric coefficient

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A magnetoelectric sensor with the highest currently known quasi-static magnetoelectric coefficient, 92 V/(cm Oe), is theoretically described. A model is suggested based on which the optimal thickness of piezoceramics providing the highest generated voltage is determined. The influence of the Maxwell-Wagner relaxation and effective parameter approximation on the physical properties of hybrid structures is studied for the first time. The theoretical and experimental data are compared with models that consider the transformed cross section method as a main technique for determining the equivalent stiffness of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.-W. Nan, M. I. Bichurin, S. Dong, et al., J. Appl. Phys. 103, 031101 (2008).

    Article  ADS  Google Scholar 

  2. D. A. Filippov, T. A. Galkina, V. M. Laletin, et al., Tech. Phys. Lett. 38, 93 (2012).

    Article  ADS  Google Scholar 

  3. D. A. Filippov, Phys. Solid State 54, 1182 (2012).

    Article  ADS  Google Scholar 

  4. G. Liu, X. Li, J. Chen, et al., Appl. Phys. Lett. 101, 142904 (2012).

    Article  ADS  Google Scholar 

  5. G. Smits Jan, S. I. Dalke, and T. K. Cooney, Sens. Actuators A 28, 41 (1991).

    Article  Google Scholar 

  6. Q.-M. Wang, X.-H. Du, B. Xu, and L. E. Cross, J. Appl. Phys. 85, 1702 (1999).

    Article  ADS  Google Scholar 

  7. T. T. Nguyen, F. Bouillault, L. Daniel, and H. Mininger, J. Appl. Phys. 109, 081904 (2011).

    Google Scholar 

  8. V. I. Feodos’ev, Strength of Materials (Mir, Moscow, 1968).

    Google Scholar 

  9. V. M. Petrov, G. Srinivasan, and M. I. Bichurin, J. Appl. Phys. 105, 063911 (2009).

    Article  ADS  Google Scholar 

  10. Q.-M. Wang and L. E. Cross, Ferroelectrics 215, 187 (1998).

    Article  Google Scholar 

  11. V. M. Petrov, M. I. Bichurin, and G. Srinivasan, Tech. Phys. Lett. 30, 6 (2004).

    Article  ADS  Google Scholar 

  12. A. V. Turik and G. S. Radchenko, J. Phys. D: Appl. Phys. 35, 1188 (2002).

    Article  ADS  Google Scholar 

  13. N. Wu, Q. Wang, and S. T. Quek, J. Sound Vib. 329, 1126 (2010).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Radchenko.

Additional information

Original Russian Text © G.S. Radchenko, M.G. Radchenko, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 10, pp. 39–43.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radchenko, G.S., Radchenko, M.G. Magnet-metal-piezoelectric magnetic sensor with the highest magnetoelectric coefficient. Tech. Phys. 59, 1457–1461 (2014). https://doi.org/10.1134/S1063784214100259

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214100259

Keywords

Navigation