Skip to main content
Log in

Silicide formation in bilayer ultrathin iron and cobalt films on silicon

  • Physics of Nanostructures
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The processes that occur in ultrathin (up to 1 nm) Fe and Co layers during deposition onto the Si(100)2 × 1 surface in various sequences and during annealing of the formed structures to a temperature of 400°C are studied. The elemental and chemical compositions of the films are analyzed by in situ high-resolution X-ray photoelectron spectroscopy using synchrotron radiation, and their magnetic properties are determined using the magnetic linear dichroism effect in the angular distribution of Fe 3p and Co 3p electrons. It is shown that, when iron is first deposited, the formed structure consists of the layers of FeSi, Fe3Si, Co-Si solid solution, and metallic cobalt with segregated silicon. The structure formed in the alternative case consists of the layers of CoSi, Co-Si solid solution, Co, Fe-Si solid solution, and Fe partly covered by silicon. All layers (apart from FeSi, CoSi) form general magnetic systems characterized by ferromagnetic ordering. Annealing of the structures at temperatures above 130dgC (for the Co/Fe/Si system) and ∼200°C (for Fe/Co/Si) leads to the formation of nonmagnetic binary and ternary silicides (Fe x Co1 − x Si, Fe x Co2 − x Si).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gloskovskii, J. Barth, B. Balke, G. H. Fecher, C. Felser, F. Kronast, R. Ovsyannikov, H. Dürr, W. Eberhard, and G. Schönhense, Phys. D: Appl. Phys. 40, 1570 (2006).

    Article  ADS  Google Scholar 

  2. S. Yamada, K. Hamaya, K. Yamamoto, T. Murakami, K. Mibu, and M. Miyao, Appl. Phys. Lett. 96, 082511 (2010).

    Article  ADS  Google Scholar 

  3. M. V. Gomoyunova, G. S. Grebenyuk, and I. I. Pronin, Tech. Phys. 56, 1670 (2011).

    Article  Google Scholar 

  4. P. Wetzel, P. Bertoncini, D. Berling, A. Mehdaoui, B. Loegel, D. Bolmont, G. Gewinner, C. Ulhaq-Bouillet, and V. Pierron-Bohnes, Surf. Sci. 499, 210 (2002).

    Article  ADS  Google Scholar 

  5. Y. Maeda, K. Hamaya, S. Yamada, Y. Ando, K. Yamane, and M. Miyao, Appl. Phys. Lett. 97, 192501 (2010).

    Article  ADS  Google Scholar 

  6. Ch. Roth, F. U. Hillebrecht, H. B. Rose, and E. Kisker, Phys. Rev. Lett. 70, 3479 (1993).

    Article  ADS  Google Scholar 

  7. N. Janke-Gilman, M. Hochstasser, and R. F. Willis, Phys. Rev. B 70, 184439 (2004).

    Article  ADS  Google Scholar 

  8. M. V. Gomoyunova, I. I. Pronin, N. R. Gall’, S. L. Molodtsov, and D. V. Vyalykh, Phys. Solid State 45, 1596 (2003).

    Article  ADS  Google Scholar 

  9. R. I. G. Uhrberg, J. Phys.: Condens. Matter. 13, 11181 (2001).

    ADS  Google Scholar 

  10. H. Koh, J. W. Kim, W. H. Choi, and H. W. Yeom, Phys. Rev. B 67, 073306 (2003).

    Article  ADS  Google Scholar 

  11. M. V. Gomoyunova, I. I. Pronin, N. R. Gall’, S. L. Molodtsov, and D. V. Vyalykh, Tech. Phys. Lett. 29, 496 (2003).

    Article  ADS  Google Scholar 

  12. R. Klasges, C. Carbone, W. Eberhardt, C. Pampuch, O. Rader, T. Kachel, and W. Gudat, Phys. Rev. B 56, 10801 (1997).

    Article  ADS  Google Scholar 

  13. I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh, Yu. S. Dedkov, and S. L. Molodtsov, Appl. Phys. A 94, 467 (2009).

    Article  ADS  Google Scholar 

  14. F. Sirotti, M. DeSantis, X. Jin, and G. Rossi, Phys. Rev. B 49, 11134 (1994).

    Article  ADS  Google Scholar 

  15. I. I. Pronin, M. V. Gomoyunova, S. M. Solov’ev, O. Yu. Vilkov, and D. V. Vyalykh, Phys. Solid State 53, 606 (2011).

    Article  ADS  Google Scholar 

  16. D. Berling, G. Gewinner, M. C. Hanf, K. Hricovini, S. Hong, B. Loegel, A. Mehdaoui, C. Pirri, M. H. Tuiler, and P. Wetzel, J. Magn. Magn. Mater. 191, 331 (1999).

    Article  ADS  Google Scholar 

  17. J. S. Tsay, C. S. Yang, Y. Liou, and Y. D. Yao, J. Appl. Phys. 85, 4967 (1999).

    Article  ADS  Google Scholar 

  18. H. W. Chang, J. S. Tsay, Y. C. Hung, F. T. Yuan, W. Y. Chan, W. B. Su, C. S. Chang, and Y. D. Yao, J. Appl. Phys. 101, 090D124 (2007).

    Google Scholar 

  19. I. I. Pronin, M. V. Gomoyunova, D. E. Malygin, D. V. Vyalikh, Yu. S. Dedkov, and S. L. Molodtsov, Appl. Phys. 104, 104914 (2008).

    Article  Google Scholar 

  20. M. V. Gomoyunova, I. I. Pronin, N. R. Gall, S. L. Molodtsov, and D. V. Vyalikh, Surf. Sci. 578, 174 (2005).

    Article  ADS  Google Scholar 

  21. M. V. Gomoyunova, G. S. Grebenyuk, and I. I. Pronin, Tech. Phys. Lett. 37, 1124 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Pronin.

Additional information

Original Russian Text © M.V. Gomoyunova, G.S. Grebenyuk, I.I. Pronin, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 10, pp. 73–78.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomoyunova, M.V., Grebenyuk, G.S. & Pronin, I.I. Silicide formation in bilayer ultrathin iron and cobalt films on silicon. Tech. Phys. 59, 1492–1498 (2014). https://doi.org/10.1134/S1063784214100168

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784214100168

Keywords

Navigation