Advertisement

Technical Physics

, Volume 59, Issue 6, pp 852–856 | Cite as

Simulation of the behavior of the cutting force during ultrasonic rotary machining of materials using structure-time fracture mechanics

  • N. A. Gorbushin
  • G. A. Volkov
  • Yu. V. Petrov
Solid State

Abstract

An analytical model is developed for the behavior of the cutting force during ultrasonic rotary polishing, and it is based on the concepts of dynamic fracture mechanics and the solution to the problem of impact surface fracture. The dependence of the threshold fracture energy obtained in the problem of erosion using a structure-time approach is used to construct the cutting force model. The dependences of the cutting force on the material feed rate and the rate of tool rotation are obtained, and the developed model is shown to be efficient to explain the effects observed in experiments.

Keywords

Half Space Threshold Energy Ultrasonic Vibration Maximum Tensile Stress 12Kh18N10T Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Kumabe, Vibration Cutting (Dzikke Sjuppan, Tokyo, 1979; Mashinostroenie, Moscow, 1985), translated from Japanese.Google Scholar
  2. 2.
    C. Tsutsumi, K. Okana, and T. Suto, J. Mater. Process. Technol. 37, 639 (1993).CrossRefGoogle Scholar
  3. 3.
    R. Singh and J. S. Khamba, J. Mater. Process. Technol. 173, 125 (2006).CrossRefGoogle Scholar
  4. 4.
    G. Ya, H. W. Qin, S. C. Yang, and Y. W. Xu, J. Mater. Process. Technol. 129, 182 (2002).CrossRefGoogle Scholar
  5. 5.
    N. J. Churi, Z. J. Pei, and C. Treadwell, Mach. Sci. Technol. 10, 301 (2006).CrossRefGoogle Scholar
  6. 6.
    C. Y. Khoo, Esah Hamzah, and Izman Sudin, Mekanikal, No. 25, 9 (2008).Google Scholar
  7. 7.
    Liu DeFu, W. L. Cong, Z. J. Pei, and Tang Yongjun, Int. J. Mach. Tools Manuf. 52, 77 (2012).CrossRefGoogle Scholar
  8. 8.
    P. Hu, J. M. Zhang, Z. J. Pei, and C. Treadwell, J. Mater. Process. Technol. 129, 339 (2002).CrossRefGoogle Scholar
  9. 9.
    Q. Wang, W. Cong, Z. J. Pei, H. Gao, and K. Renke, J. Manuf. Process. 11, 66 (2009).CrossRefGoogle Scholar
  10. 10.
    W. C. Cong, Z. J. Pei, Q. Feng, T. W. Deines, and C. Treadwell, J. Reinf. Plast. Comp. 31, 313 (2012).CrossRefGoogle Scholar
  11. 11.
    Yu. V. Petrov and A. A. Utkin, Sov. Mater. Sci. 25, 153 (1989).CrossRefGoogle Scholar
  12. 12.
    Yu. V. Petrov, Sov. Phys. Dokl. 36, 802 (1991).ADSGoogle Scholar
  13. 13.
    Yu. V. Petrov, Dokl. Phys. 49, 246 (2004).ADSCrossRefGoogle Scholar
  14. 14.
    N. F. Morozov and Y. V. Petrov. Problems of Dynamic Fracture in Solids (SPbSU, St.Petersburg, 1997).Google Scholar
  15. 15.
    G. A. Volkov, V. A. Bratov, A. A. Gruzdkov, V. I. Ba- bitsky, Yu. V. Petrov, and V. V. Silberschmidt, Shock Vib. 18, 333 (2011).CrossRefGoogle Scholar
  16. 16.
    V. I. Smirnov, Strength Mater. 39, 46 (2007).CrossRefGoogle Scholar
  17. 17.
    G. A. Volkov, N. A. Gorbushin, and Yu. V. Petrov, Mech. Solids 47, 491 (2012).CrossRefGoogle Scholar
  18. 18.
    K. Johnson, Contact Mechanics (Cambridge Univ. Press, Cambridge, 1987).Google Scholar
  19. 19.
    Yu. V. Kolesnikov and E. M. Morozov, Contact Failure Mechanics (Nauka, Moscow, 1989).Google Scholar
  20. 20.
    W. L. Cong, Z. J. Pei, N. Mohanty, E. Van Vleet, and C. Treadwell, Manuf. Sci. E.-T. ASME 133, 034501 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • N. A. Gorbushin
    • 1
  • G. A. Volkov
    • 1
    • 2
  • Yu. V. Petrov
    • 1
    • 2
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations