Skip to main content

Formation of W/HfO2/Si gate structures using in situ magnetron sputtering and rapid thermal annealing

Abstract

The W(150 nm)/HfO2(5 nm)/Si(100) structures prepared in a single vacuum cycle by rf magnetron sputtering were subjected to rapid thermal annealing in argon. It is found that at an annealing temperature of 950°C, the tungsten oxide WO x phase and the hafnium silicate HfSi x O y phase grow at the W/HfO2 and HfO2/Si(100) interfaces, respectively. Herewith, the total thickness of the oxide layeris 30% larger than that of the initial HfO2 film. In addition, a decrease in the specific capacitance in accumulation C max and in the dielectric constant k (from 27 to 23) is observed. At an annealing temperature of 980°C, intensive interaction between tungsten and HfO2 takes place, causing the formation of a compositionally inhomogeneous Hf x Si y W z O oxide layer and further decrease in C max. It is shown that a considerable reduction in the leakage currents occurs in the W/HfO2/X/Si(100) structures, where X is a nitride barrier layer.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Synthesis, Properties, and Applications of High-Permittivity Dielectrics in Silicon Devices, Ed. by A. L. Aseev and V. A. Gritsenko (SO RAN, Novosibirsk, 2011).

    Google Scholar 

  2. 2.

    J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).

    ADS  Article  Google Scholar 

  3. 3.

    S.-W. Jeong, K. S. Ki, M. T. You, et al., J. Korean Phys. Soc. 47, S401 (2005).

    Google Scholar 

  4. 4.

    R. Jiang and Z.-F. Li, Chin. Phys. Lett. 26, 057101 (2009).

    ADS  Article  Google Scholar 

  5. 5.

    T.-T. Tan, Zh.-T. Liu, W.-T. Liu, et al., Chin. Phys. Lett. 25, 3750 (2008).

    ADS  Article  Google Scholar 

  6. 6.

    H. Kobayashi, K. Imamura, K. Fukayama, et al., Surf. Sci. 602, 1948 (2008).

    ADS  Article  Google Scholar 

  7. 7.

    O. Maida, K. Fukayama, M. Takahashi, et al., Appl. Phys. Lett. 89, 122112 (2006).

    ADS  Article  Google Scholar 

  8. 8.

    H. Garcia, S. Duenas, H. Castan, et al., J. Appl. Phys. 104, 094107 (2008).

    ADS  Article  Google Scholar 

  9. 9.

    M. Cho, J. Park, H. B. Park, et al., Appl. Phys. Lett. 81, 3630 (2002).

    ADS  Article  Google Scholar 

  10. 10.

    M. Toledano-Luque, M. L. Lucia, A. del Prado, et al., Appl. Phys. Lett. 91, 191502 (2007).

    ADS  Article  Google Scholar 

  11. 11.

    E. J. Preisler, S. Guha, M. Copel, et al., Appl. Phys. Lett. 85, 6230 (2004).

    ADS  Article  Google Scholar 

  12. 12.

    T. Inoue, K. Suzuki, and H. Miura, in Proceedings of the 14th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), San Diego, 2009, pp. 198–202.

  13. 13.

    V. I. Rudakov, E. A. Bogoyavlenskaya, Yu. I. Denisenko, et al., Nanotechnol. in Russia 8(3–4), 255 (2013).

    Article  Google Scholar 

  14. 14.

    V. I. Rudakov, E. A. Bogoyavlenskaya, Yu. I. Denisenko, et al., Russ. Microelectron. 40, 383 (2011).

    Article  Google Scholar 

  15. 15.

    V. I. Rudakov, E. A. Bogoyavlenskaya, Yu. I. Denisenko, et al., Proc. SPIE 8700, 87000E (2013).

    ADS  Article  Google Scholar 

  16. 16.

    K. J. Yang and C. Hu, IEEE Trans. Electron Devices 46, 1500 (1999).

    ADS  Article  Google Scholar 

  17. 17.

    V. I. Rudakov, E. A. Bogoyavlenskaya, and Yu. I. Denisenko, Tech. Phys. Lett. 38, 982 (2012).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. A. Bogoyavlenskaya.

Additional information

Original Russian Text © E.A. Bogoyavlenskaya, V.I. Rudakov, Yu.I. Denisenko, V.V. Naumov, A.E. Rogozhin, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 5, pp. 82–87.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bogoyavlenskaya, E.A., Rudakov, V.I., Denisenko, Y.I. et al. Formation of W/HfO2/Si gate structures using in situ magnetron sputtering and rapid thermal annealing. Tech. Phys. 59, 711–715 (2014). https://doi.org/10.1134/S1063784214050065

Download citation

Keywords

  • Versus Characteristic
  • Rapid Thermal Annealing
  • Tungsten Oxide
  • Gate Structure
  • Maximal Specific Capacitance