Advertisement

Technical Physics

, Volume 59, Issue 5, pp 711–715 | Cite as

Formation of W/HfO2/Si gate structures using in situ magnetron sputtering and rapid thermal annealing

  • E. A. BogoyavlenskayaEmail author
  • V. I. Rudakov
  • Yu. I. Denisenko
  • V. V. Naumov
  • A. E. Rogozhin
Physics of Nanostructures
  • 43 Downloads

Abstract

The W(150 nm)/HfO2(5 nm)/Si(100) structures prepared in a single vacuum cycle by rf magnetron sputtering were subjected to rapid thermal annealing in argon. It is found that at an annealing temperature of 950°C, the tungsten oxide WO x phase and the hafnium silicate HfSi x O y phase grow at the W/HfO2 and HfO2/Si(100) interfaces, respectively. Herewith, the total thickness of the oxide layeris 30% larger than that of the initial HfO2 film. In addition, a decrease in the specific capacitance in accumulation C max and in the dielectric constant k (from 27 to 23) is observed. At an annealing temperature of 980°C, intensive interaction between tungsten and HfO2 takes place, causing the formation of a compositionally inhomogeneous Hf x Si y W z O oxide layer and further decrease in C max. It is shown that a considerable reduction in the leakage currents occurs in the W/HfO2/X/Si(100) structures, where X is a nitride barrier layer.

Keywords

Versus Characteristic Rapid Thermal Annealing Tungsten Oxide Gate Structure Maximal Specific Capacitance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Synthesis, Properties, and Applications of High-Permittivity Dielectrics in Silicon Devices, Ed. by A. L. Aseev and V. A. Gritsenko (SO RAN, Novosibirsk, 2011).Google Scholar
  2. 2.
    J. Robertson, Eur. Phys. J. Appl. Phys. 28, 265 (2004).ADSCrossRefGoogle Scholar
  3. 3.
    S.-W. Jeong, K. S. Ki, M. T. You, et al., J. Korean Phys. Soc. 47, S401 (2005).Google Scholar
  4. 4.
    R. Jiang and Z.-F. Li, Chin. Phys. Lett. 26, 057101 (2009).ADSCrossRefGoogle Scholar
  5. 5.
    T.-T. Tan, Zh.-T. Liu, W.-T. Liu, et al., Chin. Phys. Lett. 25, 3750 (2008).ADSCrossRefGoogle Scholar
  6. 6.
    H. Kobayashi, K. Imamura, K. Fukayama, et al., Surf. Sci. 602, 1948 (2008).ADSCrossRefGoogle Scholar
  7. 7.
    O. Maida, K. Fukayama, M. Takahashi, et al., Appl. Phys. Lett. 89, 122112 (2006).ADSCrossRefGoogle Scholar
  8. 8.
    H. Garcia, S. Duenas, H. Castan, et al., J. Appl. Phys. 104, 094107 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    M. Cho, J. Park, H. B. Park, et al., Appl. Phys. Lett. 81, 3630 (2002).ADSCrossRefGoogle Scholar
  10. 10.
    M. Toledano-Luque, M. L. Lucia, A. del Prado, et al., Appl. Phys. Lett. 91, 191502 (2007).ADSCrossRefGoogle Scholar
  11. 11.
    E. J. Preisler, S. Guha, M. Copel, et al., Appl. Phys. Lett. 85, 6230 (2004).ADSCrossRefGoogle Scholar
  12. 12.
    T. Inoue, K. Suzuki, and H. Miura, in Proceedings of the 14th International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), San Diego, 2009, pp. 198–202.Google Scholar
  13. 13.
    V. I. Rudakov, E. A. Bogoyavlenskaya, Yu. I. Denisenko, et al., Nanotechnol. in Russia 8(3–4), 255 (2013).CrossRefGoogle Scholar
  14. 14.
    V. I. Rudakov, E. A. Bogoyavlenskaya, Yu. I. Denisenko, et al., Russ. Microelectron. 40, 383 (2011).CrossRefGoogle Scholar
  15. 15.
    V. I. Rudakov, E. A. Bogoyavlenskaya, Yu. I. Denisenko, et al., Proc. SPIE 8700, 87000E (2013).ADSCrossRefGoogle Scholar
  16. 16.
    K. J. Yang and C. Hu, IEEE Trans. Electron Devices 46, 1500 (1999).ADSCrossRefGoogle Scholar
  17. 17.
    V. I. Rudakov, E. A. Bogoyavlenskaya, and Yu. I. Denisenko, Tech. Phys. Lett. 38, 982 (2012).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • E. A. Bogoyavlenskaya
    • 1
    Email author
  • V. I. Rudakov
    • 1
  • Yu. I. Denisenko
    • 1
  • V. V. Naumov
    • 1
  • A. E. Rogozhin
    • 2
  1. 1.Institute of Physics and Technology, Yaroslavl BranchRussian Academy of SciencesYaroslavlRussia
  2. 2.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia

Personalised recommendations