Advertisement

Technical Physics

, Volume 59, Issue 2, pp 194–198 | Cite as

Dynamic fragmentation of solid particles interacting with a rigid barrier

  • N. A. Gorbushin
  • Yu. V. Petrov
Solid State

Abstract

Fragmentation of small solid particles as a result of collision with a rigid barrier is considered. It is shown that the application of the Griffith energy approach to dynamic fracture is characterized by specific surface energy differing from its value determined from static tests. The existence of the threshold fragmentation velocity is established and the method for its prediction is proposed. The method for experimental estimation of the fracture incubation time is also proposed.

Keywords

Incubation Time Impact Velocity Dynamic Fracture Cleavage Fracture Threshold Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Salman, G. K. Reynolds, J. S. Fu, et al., Powder Technol. 143–144, 19 (2004).CrossRefGoogle Scholar
  2. 2.
    D. A. Gorham, A. D. Salman, and M. J. Pitt, Powder Technol. 138, 229 (2003).CrossRefGoogle Scholar
  3. 3.
    E. A. Andrews and K.-S. Kim, Mech. Mater. 29, 161 (1998).CrossRefGoogle Scholar
  4. 4.
    Fracture: An Advanced Treatise, Ed. by H. Liebowitz, Vol. 2: Mathematical Fundamentals (Academic, New York, 1968).zbMATHGoogle Scholar
  5. 5.
    G. P. Cherepanov, Mechanics of Brittle Fracture (McGraw-Hill, New York, 1979).zbMATHGoogle Scholar
  6. 6.
    Y. V. Petrov, B. L. Karihaloo, V. V. Bratov, et al., Int. J. Eng. Sci. 61, 3 (2012).CrossRefGoogle Scholar
  7. 7.
    A. A. Gruzdkov, S. I. Krivosheev, and Yu. V. Petrov, Phys. Solid State 45, 886 (2003).ADSCrossRefGoogle Scholar
  8. 8.
    E. A. Andrews and K.-S. Kim, Mech. Mater. 31, 689 (1999).CrossRefGoogle Scholar
  9. 9.
    A. I. Lur’e, Three-Dimensional Problems of the Theory of Elasticity (Interscience, New York, 1964).zbMATHGoogle Scholar
  10. 10.
    K. L. Johnson, Contact Mechanics (Cambridge Univ., Cambridge, 1987).Google Scholar
  11. 11.
    G. A. Volkov, N. A. Gorbushin, and Yu. V. Petrov, Mech. Solids 47, 491 (2012).CrossRefGoogle Scholar
  12. 12.
    G. A. Volkov, V. A. Bratov, A. A. Gruzdkov, V. I. Ba- bitsky, Yu. V. Petrov, and V. V. Silberschmidt, Shock Vibration 18, 333 (2011).CrossRefGoogle Scholar
  13. 13.
    Yu. V. Petrov and Y. V. Sitnikova, Tech. Phys. 50, 1034 (2005).CrossRefGoogle Scholar
  14. 14.
    V. A. Bratov, N. F. Morozov, and Yu. V. Petrov, Dynamic Strength of Continuum (St. Petersburg Univ., St. Petersburg, 2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institute of Problems of Mechanical EngineeringRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations