Skip to main content

Structure and the emission and piezoelectric properties of MOCVD-grown ZnS, ZnS-ZnO, and ZnO films

Abstract

Zinc sulfide and zinc oxide films are produced by the pyrolysis of organometallic compounds (MOCVD technique). The objects of investigation are the phase composition, structure, surface topology, and the optical and piezoelectric properties of the films obtained under different process conditions. The composition of the films depends on the purity level of the precursor, substrate temperature (as the temperature grows, the composition varies from ZnS to ZnO), and evaporation rate (with an increase in this rate, the composition changes from ZnO to ZnS). In addition, ZnS turns into ZnO upon annealing at 600°C. In the most perfect ZnS films, which are obtained with the purest precursor, intense edge luminescence (3.64 eV) is observed for the first time at room temperature. Two-phase ZnS-ZnO films obtained from a cheap precursor are characterized by pronounced piezoelectric properties and can be used in designing different piezoelectric and acoustoelectric devices.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    L. P. Schuler, M. M. Alkaisi, P. Miller, and R. J. Reeves, Microelectron. Eng. 83, 1403 (2006).

    Article  Google Scholar 

  2. 2.

    J. P. Atanas, R. A. Asmara, A. Khoury, and A. Foucaran, Sens. Actuators A 127, 49 (2006).

    Article  Google Scholar 

  3. 3.

    K. Ebihara, S.-M. Park, K. Fujii, and T. Ikegami, Thin Solid Films 515, 6368 (2007).

    ADS  Article  Google Scholar 

  4. 4.

    A. A. Blistanov, V. S. Bondarenko, N. V. Perelomova, F. N. Strizhevskaya, V. V. Chkalova, and M. P. Shaskol’skaya, Acoustic Crystals (Nauka, Moscow, 1982).

    Google Scholar 

  5. 5.

    G. Ferblantier, F. Mailly, R. Al. Asmar, et al., Sens. Actuators A 122, 184 (2005).

    Article  Google Scholar 

  6. 6.

    E. Fortunato, P. Barquinha, A. Pimentel, et al., Thin Solid Films 487, 205 (2005).

    ADS  Article  Google Scholar 

  7. 7.

    N. Mukherjeea, S. F. Ahmedb, K. K. Chattopadhyayc, and A. Mondal, Electrochim. Acta. 54, 4015 (2009).

    Article  Google Scholar 

  8. 8.

    C. D. Lokhandea, P. M. Gondkara, R. S. Maneb, V. R. Shindea, and S.-H. Hanb, J. Alloys Compd. 475, 304 (2009).

    Article  Google Scholar 

  9. 9.

    L. Wang, X. Zhang, C. Shao, X. Hong, Q. Qiao, and Y. Liu, Mater. Chem. Phys. 115, 547 (2009).

    Article  Google Scholar 

  10. 10.

    V. S. Bondarenko, B. G. Bochkov, V. L. Gromashevskii, and B. V. Sobolev, Nonlinear Acoustoelectronic Devices and Their Applications (Radio i Svyaz’, Moscow, 1985).

    Google Scholar 

  11. 11.

    T. G. Kryshtab, V. S. Khomchenko, V. B. Khachatryan, N. N. Roshchina, J. A. Andraca-Adame, O. S. Lytvyn, and V. I. Kushnirenko, J. Mater. Sci.: Mater. Electron. 18, 1115 (2007).

    Google Scholar 

  12. 12.

    V. S. Khomchenko, T. G. Kryshtab, A. K. Savin, L. V. Zavyalova N. N. Roshchina, V. E. Rodionov, O. S. Lytvyn, V. I. Kushnirenko, V. B. Khachatryan, and J. A. Andraca-Adame, Superlattices Microstruct. 42, 94 (2007).

    ADS  Article  Google Scholar 

  13. 13.

    J. Stary, The Solvent Extraction of Metal Chelates (Pergamon, Oxford, 1964).

    Google Scholar 

  14. 14.

    P. P. Korostelev, Preparation of Solutions for Chemical Analytical Works (Nauka, Moscow, 1964).

    Google Scholar 

  15. 15.

    V. A. V’yun, V. N. Yumashev, and I. B. Yakovkin, Prib. Tekh. Eksp., No. 6, 192 (1986).

    Google Scholar 

  16. 16.

    T. G. Kryshtab, V. S. Khomchenko, J. A. Andraca-Adame, L. V. Zavyalova, N. N. Roshchina, V. E. Rodionov, and V. B. Khachatryan, Thin Solid Films 515, 513 (2006).

    ADS  Article  Google Scholar 

  17. 17.

    Guang-hui Ning, Xiao-peng Zhao, Jia Li, and Changqing Zhang, Opt. Mater. 28, 385 (2006).

    ADS  Article  Google Scholar 

  18. 18.

    Lili Wu, Youshi Wu, Xiaoru Pan, and Fanyan Kong, Opt. Mater. 28, 418 (2006).

    ADS  Article  Google Scholar 

  19. 19.

    M. Aven and J. S. Prener, Physics and Chemistry of II–VI Compounds (North-Holland, Amsterdam, 1967).

    Google Scholar 

  20. 20.

    Landolt-Börnstein: Group III: Crystal and Solid State Physics, Ed. by O. Madelung, M. Schulz, and H. Weiss (Springer, Berlin, 1982), Vol. 17, p. 92.

    Google Scholar 

  21. 21.

    Landolt-Börnstein: Group III: Crystal and Solid State Physics, Ed. by O. Madelung, M. Schulz, and H. Weiss (Springer, Berlin, 1982), Vol. 17, p. 4.

    Google Scholar 

  22. 22.

    A. M. Gurvich, Introduction to Physical Chemistry of Crystallophosphors (Vysshaya Shkola, Moscow, 1971), p. 173.

    Google Scholar 

  23. 23.

    Ya. I. Alivov, M. V. Chukichev, and V. A. Nikitenko, Semiconductors 38, 31 (2004).

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. V. Zavyalova.

Additional information

Original Russian Text © V.S. Khomchenko, N.N. Roshchina, L.V. Zavyalova, V.V. Strelchuk, G.S. Svechnikov, N.P. Tatyanenko, V.L. Gromashevskii, O.S. Litvin, E.A. Avramenko, B.A. Snopok, 2014, published in Zhurnal Tekhnicheskoi Fiziki, 2014, Vol. 84, No. 1, pp. 94–103.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Khomchenko, V.S., Roshchina, N.N., Zavyalova, L.V. et al. Structure and the emission and piezoelectric properties of MOCVD-grown ZnS, ZnS-ZnO, and ZnO films. Tech. Phys. 59, 93–101 (2014). https://doi.org/10.1134/S1063784214010071

Download citation

Keywords

  • Substrate Temperature
  • Piezoelectric Property
  • Metallic Impurity
  • Niobate Lithium
  • Purity Level