Advertisement

Technical Physics

, Volume 59, Issue 1, pp 93–101 | Cite as

Structure and the emission and piezoelectric properties of MOCVD-grown ZnS, ZnS-ZnO, and ZnO films

  • V. S. Khomchenko
  • N. N. Roshchina
  • L. V. ZavyalovaEmail author
  • V. V. Strelchuk
  • G. S. Svechnikov
  • N. P. Tatyanenko
  • V. L. Gromashevskii
  • O. S. Litvin
  • E. A. Avramenko
  • B. A. Snopok
Physics of Nanostructures

Abstract

Zinc sulfide and zinc oxide films are produced by the pyrolysis of organometallic compounds (MOCVD technique). The objects of investigation are the phase composition, structure, surface topology, and the optical and piezoelectric properties of the films obtained under different process conditions. The composition of the films depends on the purity level of the precursor, substrate temperature (as the temperature grows, the composition varies from ZnS to ZnO), and evaporation rate (with an increase in this rate, the composition changes from ZnO to ZnS). In addition, ZnS turns into ZnO upon annealing at 600°C. In the most perfect ZnS films, which are obtained with the purest precursor, intense edge luminescence (3.64 eV) is observed for the first time at room temperature. Two-phase ZnS-ZnO films obtained from a cheap precursor are characterized by pronounced piezoelectric properties and can be used in designing different piezoelectric and acoustoelectric devices.

Keywords

Substrate Temperature Piezoelectric Property Metallic Impurity Niobate Lithium Purity Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. P. Schuler, M. M. Alkaisi, P. Miller, and R. J. Reeves, Microelectron. Eng. 83, 1403 (2006).CrossRefGoogle Scholar
  2. 2.
    J. P. Atanas, R. A. Asmara, A. Khoury, and A. Foucaran, Sens. Actuators A 127, 49 (2006).CrossRefGoogle Scholar
  3. 3.
    K. Ebihara, S.-M. Park, K. Fujii, and T. Ikegami, Thin Solid Films 515, 6368 (2007).ADSCrossRefGoogle Scholar
  4. 4.
    A. A. Blistanov, V. S. Bondarenko, N. V. Perelomova, F. N. Strizhevskaya, V. V. Chkalova, and M. P. Shaskol’skaya, Acoustic Crystals (Nauka, Moscow, 1982).Google Scholar
  5. 5.
    G. Ferblantier, F. Mailly, R. Al. Asmar, et al., Sens. Actuators A 122, 184 (2005).CrossRefGoogle Scholar
  6. 6.
    E. Fortunato, P. Barquinha, A. Pimentel, et al., Thin Solid Films 487, 205 (2005).ADSCrossRefGoogle Scholar
  7. 7.
    N. Mukherjeea, S. F. Ahmedb, K. K. Chattopadhyayc, and A. Mondal, Electrochim. Acta. 54, 4015 (2009).CrossRefGoogle Scholar
  8. 8.
    C. D. Lokhandea, P. M. Gondkara, R. S. Maneb, V. R. Shindea, and S.-H. Hanb, J. Alloys Compd. 475, 304 (2009).CrossRefGoogle Scholar
  9. 9.
    L. Wang, X. Zhang, C. Shao, X. Hong, Q. Qiao, and Y. Liu, Mater. Chem. Phys. 115, 547 (2009).CrossRefGoogle Scholar
  10. 10.
    V. S. Bondarenko, B. G. Bochkov, V. L. Gromashevskii, and B. V. Sobolev, Nonlinear Acoustoelectronic Devices and Their Applications (Radio i Svyaz’, Moscow, 1985).Google Scholar
  11. 11.
    T. G. Kryshtab, V. S. Khomchenko, V. B. Khachatryan, N. N. Roshchina, J. A. Andraca-Adame, O. S. Lytvyn, and V. I. Kushnirenko, J. Mater. Sci.: Mater. Electron. 18, 1115 (2007).Google Scholar
  12. 12.
    V. S. Khomchenko, T. G. Kryshtab, A. K. Savin, L. V. Zavyalova N. N. Roshchina, V. E. Rodionov, O. S. Lytvyn, V. I. Kushnirenko, V. B. Khachatryan, and J. A. Andraca-Adame, Superlattices Microstruct. 42, 94 (2007).ADSCrossRefGoogle Scholar
  13. 13.
    J. Stary, The Solvent Extraction of Metal Chelates (Pergamon, Oxford, 1964).Google Scholar
  14. 14.
    P. P. Korostelev, Preparation of Solutions for Chemical Analytical Works (Nauka, Moscow, 1964).Google Scholar
  15. 15.
    V. A. V’yun, V. N. Yumashev, and I. B. Yakovkin, Prib. Tekh. Eksp., No. 6, 192 (1986).Google Scholar
  16. 16.
    T. G. Kryshtab, V. S. Khomchenko, J. A. Andraca-Adame, L. V. Zavyalova, N. N. Roshchina, V. E. Rodionov, and V. B. Khachatryan, Thin Solid Films 515, 513 (2006).ADSCrossRefGoogle Scholar
  17. 17.
    Guang-hui Ning, Xiao-peng Zhao, Jia Li, and Changqing Zhang, Opt. Mater. 28, 385 (2006).ADSCrossRefGoogle Scholar
  18. 18.
    Lili Wu, Youshi Wu, Xiaoru Pan, and Fanyan Kong, Opt. Mater. 28, 418 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    M. Aven and J. S. Prener, Physics and Chemistry of II–VI Compounds (North-Holland, Amsterdam, 1967).Google Scholar
  20. 20.
    Landolt-Börnstein: Group III: Crystal and Solid State Physics, Ed. by O. Madelung, M. Schulz, and H. Weiss (Springer, Berlin, 1982), Vol. 17, p. 92.Google Scholar
  21. 21.
    Landolt-Börnstein: Group III: Crystal and Solid State Physics, Ed. by O. Madelung, M. Schulz, and H. Weiss (Springer, Berlin, 1982), Vol. 17, p. 4.Google Scholar
  22. 22.
    A. M. Gurvich, Introduction to Physical Chemistry of Crystallophosphors (Vysshaya Shkola, Moscow, 1971), p. 173.Google Scholar
  23. 23.
    Ya. I. Alivov, M. V. Chukichev, and V. A. Nikitenko, Semiconductors 38, 31 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • V. S. Khomchenko
    • 1
  • N. N. Roshchina
    • 1
  • L. V. Zavyalova
    • 1
    Email author
  • V. V. Strelchuk
    • 1
  • G. S. Svechnikov
    • 1
  • N. P. Tatyanenko
    • 1
  • V. L. Gromashevskii
    • 1
  • O. S. Litvin
    • 1
  • E. A. Avramenko
    • 1
  • B. A. Snopok
    • 1
  1. 1.Lashkarev Institute of Semiconductor PhysicsNational Academy of Sciences of UkraineKyivUkraine

Personalised recommendations