Advertisement

Technical Physics

, Volume 58, Issue 12, pp 1831–1836 | Cite as

Memristor effect on bundles of vertically aligned carbon nanotubes tested by scanning tunnel microscopy

  • O. A. Ageev
  • Yu. F. Blinov
  • O. I. Il’in
  • A. S. Kolomiitsev
  • B. G. Konoplev
  • M. V. Rubashkina
  • V. A. Smirnov
  • A. A. Fedotov
Physical Electronics

Abstract

We report on the results of experimental study of an array of vertically aligned carbon nanotubes (VA CNTs) by scanning tunnel microscopy (STM). It is shown that upon the application of an external electric field to the STM probe/VA CNT system, individual VA CNTs are combined into bundles whose diameter depends on the radius of the tip of the STM probe. The memristor effect in VA CNTs is detected. For the VA CNT array under investigation, the resistivity ratio in the low- and high-resistance states at a voltage of 180 mV is 28. The results can be used in the development of structures and technological processes for designing nanoelectronics devices based on VA CNT arrays, including elements of ultrahigh-access memory cells for vacuum microelectronics devices.

Keywords

Scan Tunnel Microscopy External Electric Field Attractive Force Scan Tunnel Microscopy Image High Resistance State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    B. Bhushan, Springer Handbook of Nanotechnology, 3rd ed. (Springer, New York, 2010), p. 1964.CrossRefGoogle Scholar
  2. 2.
    D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, Nature 453(7191), 80 (2008).ADSCrossRefGoogle Scholar
  3. 3.
    L. Chua, Appl. Phys. A: Mater. Sci. Process. 102, 765 (2011).ADSCrossRefGoogle Scholar
  4. 4.
    O. A. Ageev, O. I. Il’in, V. S. Klimin, B. G. Konoplev, and A. A. Fedotov, Khim. Fiz. Mezoskop. 13, 226 (2011).Google Scholar
  5. 5.
    O. A. Ageev, O. I. Il’in, V. S. Klimin, A. S. Kolomiitsev, and A. A. Fedotov, Izv. Yuzhnogo Fed. Univ., Tekh. Nauki, No. 4, 69 (2011).Google Scholar
  6. 6.
    J. Yao, J. Zhong, L. Zhong, D. Natelson, and J. M. Tour, J. Am. Chem. Soc. 3, 4122 (2009).Google Scholar
  7. 7.
    A. Radoi, M. Dragoman, and D. Dragoman, Appl. Phys. Lett. 99, 093102 (2011).ADSCrossRefGoogle Scholar
  8. 8.
    K. Ichimura, M. Osawa, and K. Nomura, Physica B 323, 230 (2002).ADSCrossRefGoogle Scholar
  9. 9.
    V. Meunier and Ph. Lambin, Carbon 38, 1729 (2000).CrossRefGoogle Scholar
  10. 10.
    O. A. Ageev, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Ross. Nanotekh. 7, 54 (2012).Google Scholar
  11. 11.
    O. A. Ageev, O. I. Il’in, A. S. Kolomiitsev, B. G. Konoplev, M. V. Rubashkina, V. A. Smirnov, and A. A. Fedotov, Mikronanosist. Tekh., No. 3, 9 (2012).Google Scholar
  12. 12.
    A. Mayer, Phys. Rev. B 71, 235333 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    W. Lu, D. Wang, and L. Chen, Nano Lett. 7, 2729 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    G. S. Bocharov, A. A. Knizhnik, A. V. Eletskii, and T. J. Sommerer, Tech. Phys. 57, 270 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • O. A. Ageev
    • 1
  • Yu. F. Blinov
    • 1
  • O. I. Il’in
    • 1
  • A. S. Kolomiitsev
    • 1
  • B. G. Konoplev
    • 1
  • M. V. Rubashkina
    • 1
  • V. A. Smirnov
    • 1
  • A. A. Fedotov
    • 1
  1. 1.Southern Federal UniversityTaganrogRussia

Personalised recommendations