Skip to main content
Log in

Reversible permittivity of multicomponent PMN-PT-based ceramics

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The reversible permittivity of Ba-doped ceramics of the multicomponent system mPMN-nPNN-yPZN-xPT (m = 0.1298–0.4844, n = 0.1266–0.4326, y = 0.0842–0.130, x = 0.25–0.40) is studied. The reversible permittivities of cubic, heterophase, and tetragonal ceramics are analyzed under various experimental conditions, such as the measuring ac electric field frequency and the time of residence in a dc bias electric field. The transformation of permittivity minima into a plateau and the subsequent disappearance of all anomalies as the lead titanate concentration decreases are assumed to be related to a change in the initial domain structure of the material. A diagram illustrating the dependence of the tunability coefficient on the lead titanate concentration is plotted, and the ceramic compositions that correspond to the characteristic dependences of reversible permittivity are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. G. Vendik, E. Kollberg, S. S. Gevorgian, et al., Electron. Lett. 31, 654 (1995).

    Article  ADS  Google Scholar 

  2. A. B. Kozyrev, T. B. Samoilova, A. A. Golovkov, et al., J. Appl. Phys. 84, 3326 (1998).

    Article  ADS  Google Scholar 

  3. C. Ang, A. S. Bhalla, R. Guo, et al., Appl. Phys. Lett. 76, 1929 (2000).

    Article  ADS  Google Scholar 

  4. M. E. Drougard and D. R. Young, Phys. Rev. 94, 1561 (1954).

    Article  ADS  Google Scholar 

  5. E. J. Huibregtse and D. R. Young, Phys. Rev. 103, 1705 (1956).

    Article  ADS  Google Scholar 

  6. N. Barchaim, M. Brunstein, J. Grunberg, et al., J. Appl. Phys. 45, 2398 (1974).

    Article  ADS  Google Scholar 

  7. A. I. Burkhanov, A. V. Shil’nikov, Yu. N. Mamakov, et al., Phys. Solid State 44, 1741 (2002).

    Article  ADS  Google Scholar 

  8. A. V. Alpatov, A. I. Burkhanov, K. Bormanis, et al., Tech. Phys. 57, 716 (2012).

    Article  Google Scholar 

  9. T. Ogawa, Ceram. Int. 26, 383 (2000).

    Article  Google Scholar 

  10. T. Ogawa and K. Nakamura, Jpn. J. Appl. Phys. 38, 5465 (1999).

    Article  ADS  Google Scholar 

  11. T. Wu, P. Zhao, M. Bao, et al., J. Appl. Phys. 109, 124101 (2011).

    Article  ADS  Google Scholar 

  12. T. Ogawa, M. Furukawa, and T. Tsukada, Jpn. J. Appl. Phys. 48, 09kd07 (2009).

    Article  Google Scholar 

  13. M. V. Talanov, L. A. Shilkina, and L. A. Reznichenko, Phys. Solid State 54, 990 (2012).

    Article  ADS  Google Scholar 

  14. D. S. Paik, S. E. Park, S. Wada, et al., J. Appl. Phys. 85, 1080 (1999).

    Article  ADS  Google Scholar 

  15. B. Noheda, Z. Zhong, D. E. Cox, et al., Phys. Rev. B 65, 224101 (2002).

    Article  ADS  Google Scholar 

  16. F. Bai, N. Wang, J. Li, et al., J. Appl. Phys. 96, 1620 (2004).

    Article  ADS  Google Scholar 

  17. X. Li, F. Wang, Y. Lin, et al., J. Phys.: Condens. Matter 21, 335902 (2009).

    Article  Google Scholar 

  18. C.-s. Tu, V. H. Schmidt, R. R. Chien, et al., Appl. Phys. 104, 094105 (2008).

    Article  Google Scholar 

  19. H. Fu and R. E. Cohen, Nature 403, 281 (2000).

    Article  ADS  Google Scholar 

  20. D. Vanderbilt and M. H. Cohen, Phys. Rev. B 63, 094108 (2001).

    Article  ADS  Google Scholar 

  21. B. Noheda, D. E. Cox, G. Shirane, et al., Phys. Rev. Lett. 86, 3891 (2001).

    Article  ADS  Google Scholar 

  22. B. Noheda, D. E. Cox, G. Shirane, et al., Phys. Rev. B 66, 054104 (2002).

    Article  ADS  Google Scholar 

  23. V. A. Shuvaeva, A. M. Glazer, and D. Zekria, J. Phys.: Condens. Matter 17, 5709 (2005).

    Article  ADS  Google Scholar 

  24. J. S. Forrester and E. H. Kisi, Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 63, 115 (2007).

    Article  Google Scholar 

  25. D. La-orauttapong, B. Noheda, Z. Ye, et al., Phys. Rev. B 65, 144101 (2002).

    Article  ADS  Google Scholar 

  26. B. Noheda, D. E. Cox, G. Shirane, et al., Appl. Phys. Lett. 74, 2059 (1999).

    Article  ADS  Google Scholar 

  27. D. Pandey, A. K. Singh, and S. Baik, Acta Crystallogr., Sect. A: Found. Crystallogr. 64, 192 (2008).

    Article  ADS  Google Scholar 

  28. F. Fang, Luo Xu, and W. Yang, Phys. Rev. B 79, 174118 (2009).

    Article  ADS  Google Scholar 

  29. T. Hungria, F. Houdellier, M. Alguero, et al., Phys. Rev. B 81, 100102 (2010).

    Article  ADS  Google Scholar 

  30. K. A. Schonau, L. A. Schmitt, M. Knapp, et al., Phys. Rev. B 75, 184117 (2007).

    Article  ADS  Google Scholar 

  31. H. Wang, J. Zhu, N. Lu, et al., Appl. Phys. Lett. 89, 042908 (2006).

    Article  ADS  Google Scholar 

  32. S. L. Swarz and T. R. Shrout, Mater. Res. Bull. 17, 1245 (1982).

    Article  Google Scholar 

  33. M. V. Talanov, I. A. Verbenko, L. A. Shilkina, et al., Inorg. Mater. 48, 386 (2012).

    Article  Google Scholar 

  34. Z.-g. Ye, Ferroelectrics 140, 319 (1993).

    Article  Google Scholar 

  35. X. Zhao, W. Qu, X. Tan, et al., Phys. Rev. B 75, 104106 (2007).

    Article  ADS  Google Scholar 

  36. D. Viehland, S. J. Jang, L. E. Cross, et al., J. Appl. Phys. 69, 414 (1991).

    Article  ADS  Google Scholar 

  37. M. V. Talanov, O. A. Bunina, M. A. Bunin, et al., Phys. Solid State 55, 326 (2013).

    Article  ADS  Google Scholar 

  38. A. V. Turik, E. N. Sidorenko, V. F. Zhestkov, et al., Izv. Akad. Nauk Sssr, Ser. Fiz. 34, 2590 (1970).

    Google Scholar 

  39. V. Ya. Shur, G. G. Lomakin, E. L. Rumyantsev, et al., Phys. Solid State 47, 1340 (2005).

    Article  ADS  Google Scholar 

  40. M. V. Talanov and L. A. Reznichenko, Deform. Razrushenie Mater., No. 7, 2 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Talanov.

Additional information

Original Russian Text © M.V. Talanov, A.V. Turik, L.A. Reznichenko, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 11, pp. 60–66.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Talanov, M.V., Turik, A.V. & Reznichenko, L.A. Reversible permittivity of multicomponent PMN-PT-based ceramics. Tech. Phys. 58, 1608–1613 (2013). https://doi.org/10.1134/S1063784213110261

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213110261

Keywords

Navigation