Skip to main content
Log in

Fiber-optic sensors based on fluctuation oscillations of waveguide micro-optomechanical resonance structures

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The characteristics of fiber-optic oscillation frequency sensors of deformation and temperature that employ the thermal fluctuation resonant oscillations in the SMS(M) fiber structures (sensitive elements that represent oscillation systems with distributed parameters based on series-connected single- and multimode step-index fibers) are developed and studied. The measurements of the fluctuation oscillations are based on the amplitude-phase modulation of the optical wave in the multimode oscillating section due to variations in the path-length difference and tunneling of interfering beams. Accuracies of temperature and relative deformation measurements of ±2°C and ±10−5, respectively, are demonstrated. The estimation of the ultimate measurement sensitivity of the resonance frequency is based on the approximate calculation of the Allan variance that shows a possibility of the above sensors with temperature and deformation threshold sensitivities of 0.001°C and 10−8, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Tsukanov, Mikroelektronika 40, 359 (2011).

    Google Scholar 

  2. V. Pini, B. Tiribilli, C. M. C. Gambi, et al., Phys. Rev. B 81, 054302 (2010).

    Article  ADS  Google Scholar 

  3. N. V. Lavrik, M. Y. Sepaniak, and P. G. Datskos, Rev. Sci. Instrum. 75, 2229 (2004).

    Article  ADS  Google Scholar 

  4. F. Mohd-Yasin, D. Y. Nagel, and C. E. Korman, Meas. Sci. Technol. 21, 012001 (2010).

    Article  ADS  Google Scholar 

  5. S. Silva, E. G. P. Pachon, M. A. R. Franco, et al., Appl. Opt. 51, 3236 (2012).

    Article  ADS  Google Scholar 

  6. O. Basarir, S. Bramhavar, G. Basilio-Sanchez, et al., Opt. Lett. 35, 1792 (2010).

    Article  ADS  Google Scholar 

  7. E. I. Alekseev, E. N. Bazarov, Yu. A. Barannikov, et al., 23, 899 (1997).

  8. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).

    Google Scholar 

  9. L. G. Etkin, Vibration-Frequency Sensors: Theory and Practice (MGTU im. N. E. Baumana, Moscow, 2004).

    Google Scholar 

  10. D. Ramos, Y. Tamayo, Y. Mertens, et al., Nanotechnology 19, 035503 (2008).

    Article  Google Scholar 

  11. J. Ma and M. L. Povinelli, Opt. Express 19, 10102 (2011).

    Article  ADS  Google Scholar 

  12. Li Mo, W. H. P. Pernice, and H. X. Tang, Nature Nanotechnol. 4, 377 (2009).

    Article  ADS  Google Scholar 

  13. N. Yu. Lyaskovskaya, “Thermal and excess mechanical noises in prototypes of quartz suspension of gravitation antennas mirrors,” Candidate’s Dissertation (Moscow, 2006).

    Google Scholar 

  14. K. de Sudipto and N. R. Aluru, Phys. Rev. B 74, 144305 (2006).

    Article  ADS  Google Scholar 

  15. C. Lalanne, Mechanical Vibration, Random Vibration (Wiley, New York, 2010), Vol. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. A. Egorov.

Additional information

Original Russian Text © F.A. Egorov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 11, pp. 100–104.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egorov, F.A. Fiber-optic sensors based on fluctuation oscillations of waveguide micro-optomechanical resonance structures. Tech. Phys. 58, 1646–1650 (2013). https://doi.org/10.1134/S1063784213110066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213110066

Keywords

Navigation