Skip to main content
Log in

Ionization and dissociative ionization of methane molecules

  • Atomic and Molecular Physics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A technique for mass-spectrometric investigation of the yield of positive ions produced by direct and electron-impact dissociative ionization of methane molecules is described, and respective experimental data are presented. Doubly charged C +2 , CH 2+3 , and CH 2+4 ions, as well as singly charged D +2 , CD +3 , and CD +4 ions, are detected in the mass spectrum of a methane molecule at electron energy U e = 90 eV for the first time. From ionization efficiency curves, the ionization energy of the parent molecule and the appearance energy of fragment ions are determined. The ionization energy of the CH4 molecule is found to be 12.62 ± 0.20 eV. Electron-molecular reactions that may take place when a low-energy electron beam interacts with a methane molecule are analyzed. The ionization process and the formation of methane molecule fragments are studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. M. Bazhin, Sorosovsk. Obraz. Zh. 6(3), 53 (2000).

    Google Scholar 

  2. M. D. Ward, S. J. King, and S. D. Price, J. Chem. Phys. 134, 024308 (2011).

    Article  ADS  Google Scholar 

  3. F. Wang, J. Mol. Struct.: THEOCHEM 678, 105 (2004).

    Article  Google Scholar 

  4. D. A. Erwin and J. A. Kunc, J. Appl. Phys. 103, 064906 (2008).

    Article  ADS  Google Scholar 

  5. J. P. Morrison and J. C. Traeger, Int. J. Mass Spectrom. Ion Phys. 11, 289 (1973).

    Article  Google Scholar 

  6. A. N. Zavilopulo, M. I. Mykyta, and O. B. Shpenik, Tech. Phys. Lett. 38, 947 (2012).

    Article  ADS  Google Scholar 

  7. M. I. Mykyta and A. N. Zavilopulo, Vestn. Uzhgorodsk. Univ., Ser. Fiz., No. 3, 168 (2011).

    Google Scholar 

  8. A. N. Zavilopulo, E. A. Mironets, and A. S. Agafonova, Prib. Tekh. Eksp., No. 1, 73 (2012).

    Google Scholar 

  9. A. N. Zavilopulo, A. S. Agafonova, and A. V. Snegurskii, Tech. Phys. 55, 1735 (2010).

    Article  Google Scholar 

  10. N. J. Kirchner and M. T. Bowers, J. Chem. Phys. 86, 1301 (1987).

    Article  ADS  Google Scholar 

  11. NIST Standard Reference Database. http://www.web-book.nist.gov

  12. H. Chatham, D. Hils, R. Robertson, and A. Gallaghe, J. Chem. Phys. 81, 1770 (1984).

    Article  ADS  Google Scholar 

  13. Cechan Tian and C. R. Vidal, Chem. Phys. 222, 105 (1997).

    Article  ADS  Google Scholar 

  14. Xianming Liu, E. Donald, and E. Shemansky, J. Geophys. Res. 111, A04303 (2006).

    Article  ADS  Google Scholar 

  15. P. Plessis, P. Marmet, and R. Dutil, J. Phys. B 16, 1283 (1983).

    Article  ADS  Google Scholar 

  16. M. Stano, S. Matejcik, J. D. Skalny, et al., J. Phys. B 36, 261 (2003).

    Article  ADS  Google Scholar 

  17. S. Mat, O. Echt, Wörgötter, et al., Chem. Phys. Lett. 264, 149 (1997)

    Article  ADS  Google Scholar 

  18. T. Fiegele, G. Hanel, I. Torres, M. Lezius, and T. D. M’ark, J. Phys. B 33, 4263 (2000).

    Article  ADS  Google Scholar 

  19. J. D. Morrison and J. C. Traeger, Int. J. Mass Spectrom. Ion Phys. 11, 289 (1973).

    Article  Google Scholar 

  20. D. Mathur, J. Phys. B 13, 4703 (1980).

    Article  ADS  Google Scholar 

  21. H. Branson and C. Smith, J. Am. Chem. Soc. 75, 4133 (1953).

    Article  Google Scholar 

  22. A. Langer, J. A. Hipple, and D. P. Stevenson, J. Chem. Phys. 22, hbox1836 (1954).

    Google Scholar 

  23. T. Ast, C. J. Porter, C. J. Proctor, et al., Chem. Phys. Lett. 78, 439 (1981).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zavilopulo.

Additional information

Original Russian Text © A.N. Zavilopulo, M.I. Mykyta, A.N. Mylymko, O.B. Shpenik, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 9, pp. 8–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zavilopulo, A.N., Mykyta, M.I., Mylymko, A.N. et al. Ionization and dissociative ionization of methane molecules. Tech. Phys. 58, 1251–1257 (2013). https://doi.org/10.1134/S1063784213090272

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213090272

Keywords

Navigation