Skip to main content
Log in

Technical magnetization of Tb3Fe5O12 garnet ferrite near the magnetic compensation point

  • Solid State
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The domain structure and technical magnetization of a single-crystalline Tb3Fe5O12 garnet ferrite sheet near its magnetic compensation point (T c ≈ 250 K) are studied. It is found that above this temperature the domain structure persists and considerably influences the field and temperature dependences of the Faraday effect. It is shown that the behavior of Tb3Fe5O12 during technical magnetization near T c is not fully described by the existing thermodynamic theory of the domain structure. The features of the domain structure and technical magnetization of Tb3Fe5O12 are related to the transition of the magnetic structure to a non-collinear phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. P. Belov, A. K. Zvezdin, A. M. Kadomtseva, and R. Z. Levitin, Orientational Phase Transitions in Rare-Earth Magnets (Nauka, Moscow, 1979).

    Google Scholar 

  2. A. K. Zvezdin and A. P. Pyatakov, Phys. Usp. 52, 845 (2009).

    Article  ADS  Google Scholar 

  3. Handbook of Physical Quantities, Ed. by I. S. Grigoriev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991; CRC Press, Boca Raton, 1997).

    Google Scholar 

  4. N. F. Kharchenko, V. V. Eremenko, S. L. Gnatchenko, L. I. Belyi, and E. M. Kabanov, Zh. Eksp. Teor. Fiz. 68, 1073 (1975).

    Google Scholar 

  5. B. Yu. Sokolov, Phys. Solid State 53, 1581 (2011).

    Article  Google Scholar 

  6. S. Sh. Gol’dshtein, K. M. Mukimov, G. P. Sigal, and B. Yu. Sokolov, Prib. Tekh. Eksp., No. 6, 113 (1992).

    Google Scholar 

  7. M. M. Chervinskii, S. F. Glagolev, and V. B. Arkhan-gel’skii, Methods and Means for Measuring Magnetic Characteristics of Films (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  8. M. Guilot and H. Le Gall, J. Physique 38, 871 (1977).

    Article  Google Scholar 

  9. F. V. Lisovskii and V. I. Shapovalov, Sov. Phys. Solid State 17, 2017 (1975).

    Google Scholar 

  10. Yu. V. Gulyaev, P. E. Zil’berman, R. D. Eliot, and E. M. Epshtein, Phys. Solid State 44, 1111 (2002).

    Article  ADS  Google Scholar 

  11. V. G. Bar’yakhtar and D. A. Yablonskii, Sov. Phys. Solid State 16, 2282 (1974).

    Google Scholar 

  12. A. N. Bogdanov and D. A. Yablonskii, Sov. Phys. Solid State 22, 399 (1980).

    Google Scholar 

  13. B. P. Goranskii and A. K. Zvezdin, Sov. Phys. JETP 57, 299 (1969).

    ADS  Google Scholar 

  14. K. P. Belov, A. K. Gapeev, R. Z. Levitin, A. S. Markosyan, and Yu. F. Popov, Sov. Phys. JETP 68, 117 (1975).

    ADS  Google Scholar 

  15. V. V. Randoshkin and A. Ya. Chervonenkis, Applied Magnetooptics (Energoatomizdat, Moscow, 1990).

    Google Scholar 

  16. V. V. Volkov and V. A. Bokov, Phys. Solid State 50, 199 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Yu. Sokolov.

Additional information

Original Russian Text © B.Yu. Sokolov, M.Z. Sharipov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 9, pp. 31–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sokolov, B.Y., Sharipov, M.Z. Technical magnetization of Tb3Fe5O12 garnet ferrite near the magnetic compensation point. Tech. Phys. 58, 1274–1279 (2013). https://doi.org/10.1134/S1063784213090259

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213090259

Keywords

Navigation