Skip to main content
Log in

Crystallization and thermochromism of annealed heterostructures containing titanium and tungsten oxide films

  • Solid State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Crystalline phases in heterostructures containing titanium and tungsten oxide films are studied after step annealing in vacuum at temperatures between 500 and 750°C. The films are deposited on a silica glass substrate by dc reactive magnetron sputtering. It is found that crystalline phases in single layers and bilayer structures form in a different way. In the latter, crystallization is influenced by the order of layer arrangement on the substrate. Thermochromism in structures annealed in vacuum is due to the oxygen-deficient phase WO3 − x belonging to the hexagonal syngony. This phase intensely grows as the temperature rises from 650 to 750°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Rawal, A. K. Chawla, V. Chawla, et al., Appl. Surf. Sci. 256, 4129 (2010).

    Article  ADS  Google Scholar 

  2. A. V. Vorontsov, D. V. Kozlov, P. G. Smirniotis, et al., Kinet. Catal. A 46, 189 (2005).

    Article  Google Scholar 

  3. M. C. Liaoa, H. Niub, and G. S. Chena, Thin Solid Films 518, 7258 (2010).

    Article  ADS  Google Scholar 

  4. V. I. Shapovalov, Fiz. Khim. Stekla 36, 148 (2010).

    Google Scholar 

  5. M. Masaya, E. Afshin, N. Masaki, et al., Res. Chem. Intermed. 35, 997 (2009).

    Article  Google Scholar 

  6. A. B. Panda, P. Laha, K. Harish, et al., Surf. Coat. Technol. 205, 1611 (2010).

    Article  Google Scholar 

  7. T. Takahashi, H. Nakabayashi, N. Yamada, et al., J. Vac. Sci. Technol. A 21, 1409 (2003).

    Article  ADS  Google Scholar 

  8. E. A. Tutov, V. I. Kukuev, A. A. Baev, et al., Tech. Phys. 40, 697 (1995).

    Google Scholar 

  9. J.-L. Chiang, S.-S. Jan, J.-S. Chou, et al., Sens. Actuators B 76, 624 (2011).

    Article  Google Scholar 

  10. Y. Shen, T. Yamazaki, Z. Liu, et al., Thin Solid Films 517, 2069 (2009).

    Article  ADS  Google Scholar 

  11. I. Riecha, M. Acosta, J. L. Peña, et al., J. Vac. Sci. Technol. A 28, 329 (2010).

    Article  Google Scholar 

  12. K. Sauvet, L. Sauques, and A. Rougier, J. Phys. Chem. Solid 71, 696 (2010).

    Article  ADS  Google Scholar 

  13. K. Sauvet, L. Sauques, and A. Rougier, Sol. Energy Mater. Sol. Cells 93, 2045 (2009).

    Article  Google Scholar 

  14. K. Sauvet, A. Rougier, and L. Sauques, Sol. Energ. Mater. Sol. Cells 92, 209 (2008).

    Article  Google Scholar 

  15. D. Su, J. Wang, Y. Tang, et al., Chem. Commun. 47, 4231 (2011).

    Article  Google Scholar 

  16. J. He, Q. Z. Cai, D. Zhu, et al., Curr. Appl. Phys. 11, 98 (2011).

    Article  ADS  Google Scholar 

  17. P. M. Faia, A. J. Ferreira, and C. S. Furtado, Sens. Actuators B 140, 128 (2009).

    Article  Google Scholar 

  18. M. Miyauchi, J. Mater. Chem. 18, 1858 (2008).

    Article  Google Scholar 

  19. B. Sh. Galyamov, I. E. Obvintseva, Yu. E. Roginskaya, et al., Pis’ma Zh. Tekh. Fiz. 15(2), 74 (1989).

    Google Scholar 

  20. Y.-Q. Hou, D.-M. Zhuang, G. Zhang, et al., Appl. Surf. Sci. 218, 98 (2003).

    Article  ADS  Google Scholar 

  21. L. Sirghi and Y. Hatanaka, Surf. Sci. 530, 323 (2003).

    Article  Google Scholar 

  22. O. Zywitzki, T. Modes, H. Sahm, et al., Surf. Coat. Technol. 180–181, 538 (2004).

    Article  Google Scholar 

  23. A. I. Martnez, D. R. Acosta, and A. A. Lopez, J. Phys.: Condens. Matter. 16, 2335 (2004).

    Article  ADS  Google Scholar 

  24. W. Zhang, Y. Li, S. Zhu, et al., J. Vac. Sci. Technol. A 21, 1877 (2003).

    Article  ADS  Google Scholar 

  25. Z. Wenjie, L. Ying, Z. Shenglong, et al., Surf. Coat. Technol. A 182, 192 (2004).

    Article  Google Scholar 

  26. W. Zhang, Y. Li, S. Zhu, et al., Chem. Phys. Lett. 373, 333 (2003).

    Article  ADS  Google Scholar 

  27. A. A. Goncharov, A. N. Evsyukov, E. G. Kostin, et al., Tech. Phys. 55, 1200 (2010).

    Article  Google Scholar 

  28. H. N. Cui, M. F. Costa, V. Teixeira, et al., Surf. Sci. 532–535, 1127 (2003).

    Article  Google Scholar 

  29. M.-T. Ke, M.-T. Lee, C.-Y. Lee, et al., Sensors 9, 2895 (2009).

    Article  Google Scholar 

  30. M. Bendahan, R. Boulmani, J. L. Seguin, et al., Sens. Actuators B 100, 320 (2004).

    Article  Google Scholar 

  31. S. K. Gullapalli, R. S. Vemuri, and C. V. Ramana, Appl. Phys. Lett. 96, 171903 (2010).

    Article  ADS  Google Scholar 

  32. S. R. Bathe and P. S. Patil, Solid State Ionics 179, 314 (2008).

    Article  Google Scholar 

  33. L. Berggren, J. C. Jonsson, and G. A. Niklasson, J. Appl. Phys. 102, 083538 (2007).

    Article  ADS  Google Scholar 

  34. A. Karuppasamy and A. Subrahmanyam, J. Appl. Phys. 101, 113522 (2007).

    Article  ADS  Google Scholar 

  35. X. Chen, X. Wang, Y. Hou, et al., J. Catal. 255, 59 (2008).

    Article  Google Scholar 

  36. V. A. Logacheva, A. N. Lukin, and A. M. Khoviv, Zh. Neorg. Khim. 52, 1284 (2007).

    Google Scholar 

  37. O. V. Anisimov, V. I. Gaman, N. K. Maksimova, et al., Semiconductors 44, 366 (2010).

    Article  ADS  Google Scholar 

  38. E. Comini, G. Sberveglieri, and V. Guidi, Sens. Actuators 70, 108 (2000).

    Article  Google Scholar 

  39. S. Higashimoto, M. Sakiyama, and M. Azuma, Thin Solid Films 503, 201 (2006).

    Article  ADS  Google Scholar 

  40. K. J. Lethy, D. Beena, V. P. Mahadevan Pillai, et al., J. Appl. Phys. 104, 033515 (2008).

    Article  ADS  Google Scholar 

  41. A. E. Komlev, A. E. Lapshin, O. V. Magdysyuk, et al., Tech. Phys. Lett. 36, 942 (2010).

    Article  ADS  Google Scholar 

  42. V. I. Shapovalov, A. E. Lapshin, A. E. Komlev, et al., Tech. Phys. Lett. 38, 555 (2012).

    Article  ADS  Google Scholar 

  43. A. A. Barybin and V. I. Shapovalov, J. Appl. Phys. 101, 054905 (2007).

    Article  ADS  Google Scholar 

  44. V. I. Kukuev, E. A. Tutov, E. P. Domashevskaya, et al., Zh. Tekh. Fiz. 65, 1957 (1987).

    Google Scholar 

  45. J. J. Kleperis, P. D. Cikmach, and A. R. Lusis, Phys. Status Solidi A 83, 291 (1984).

    Article  ADS  Google Scholar 

  46. A. I. Gavrilyuk, V. G. Prokhvatilov, and F. A. Chudnovskii, Phys. Solid State 24, 558 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shapovalov.

Additional information

Original Russian Text © V.I. Shapovalov, A.E. Lapshin, A.E. Komlev, M.Yu. Arsent’ev, A.A. Komlev, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 9, pp. 73–83.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shapovalov, V.I., Lapshin, A.E., Komlev, A.E. et al. Crystallization and thermochromism of annealed heterostructures containing titanium and tungsten oxide films. Tech. Phys. 58, 1313–1322 (2013). https://doi.org/10.1134/S1063784213090247

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213090247

Keywords

Navigation