Skip to main content
Log in

Analysis of the production and clusterization of iron atoms under pulsed laser photolysis of Fe(CO)5

  • Optics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Atomic-resonance absorption spectroscopy is used to study the production and loss of iron atoms under dissociation of the Fe(CO)5 vapor in a quartz reactor that is induced by the pulses of the KrF excimer laser. Iron atoms populate the ground state owing to the quenching of the excited states generated in the course of the laser photolysis and are detected using the resonance absorption at a wavelength of 385.99 nm. The effective quenching rates are in good agreement with the known rates of the quenching of metastable iron atoms by the Fe(CO)5 molecules. It is demonstrated that a loss of iron atoms is related to the recombination with dimer and trimer formation and the secondary atomic reactions with the Fe(CO)5, CO, and FeCO molecules. The rates of the main elementary reactions responsible for the loss of iron atoms are determined using the comparison of the experimental results and kinetic simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. T. Yardley, B. Gittin, G. Nathanson, and A. M. Rosan, J. Chem. Phys. 74, 370 (1981).

    Article  ADS  Google Scholar 

  2. I. M. Waller and J. W. Hepburn, J. Chem. Phys. 88,6658 (1988).

    Article  ADS  Google Scholar 

  3. T. A. Seder, A. J. Ouderkirk, and E. Weitz, J. Chem. Phys. 85, 1977 (1986).

    Article  ADS  Google Scholar 

  4. K. Tanaka, Y. Tachikawa, and T. Tanaka, Chem. Phys. Lett. 281, 285 (1997).

    Article  ADS  Google Scholar 

  5. K. Lee, H. S. Yoo, and J. K. Ku, Chem. Phys. Lett. 262, 6110 (1996).

    Google Scholar 

  6. L. Banares, T. Baumert, M. Bergt, B. Kiefer, and G. Gerber, J. Chem. Phys. 108, 5799 (1998).

    Article  ADS  Google Scholar 

  7. Z. Karny, R. Naaman, and R. N. Zare, Chem. Phys. Lett. 59, 3 (1978).

    Article  ADS  Google Scholar 

  8. R. L. Whetten, K.-J. Fu, and E. R. Grant, J. Chem. Phys. 79, 4899 (1983).

    Article  ADS  Google Scholar 

  9. Y. Nagano, Y. Achiba, and K. Kimura, J. Chem. Phys. 84, 1063 (1986).

    Article  ADS  Google Scholar 

  10. B. K. Venkataraman, G. Bandukwalla, Z. Zhang, and M. Vernon, J. Chem. Phys. 90, 5510 (1989).

    Article  ADS  Google Scholar 

  11. S. A. Mitchell and P. A. Hackett, J. Chem. Phys. 93, 7813 (1990).

    Article  ADS  Google Scholar 

  12. Yu. E. Belyaev, A. V. Dem’yanenko, and A. A. Puretskii, Kvantovaya Elektron. (Moscow) 20, 405 (1993).

    Google Scholar 

  13. K. Lee, J. S. Goo, and J. K. Ku, Chem. Phys. Lett. 244, 213 (1995).

    Article  ADS  Google Scholar 

  14. N. Leadbeater, Coord. Chem. Rev. 188, 35 (1999).

    Article  Google Scholar 

  15. S. E. Frish, “Determination of concentration of normal and excited atoms and oscillator strength by metods of pulse and light absorption,” Spectroscopy of Gas-Discharge Plasma: Collection of Scientific Works, Ed. by S. E. Frish (Nauka, Leningrad, 1970).

    Google Scholar 

  16. A. Walsh, Spectrochim. Acta 7, 108 (1955).

    Article  ADS  Google Scholar 

  17. A. Giesen, A. Kovalik, and P. Roth, Phase Transit. 77, 115 (2004).

    Article  Google Scholar 

  18. U. S. Akhmadov, I. S. Zaslonko, and V. N. Smirnov, Khim. Fiz. 8, 1400 (1989).

    Google Scholar 

  19. Yu. Ralchenko, A. E. Kramida, and J. Reader, NIST ASD Team, NIST Atomic Spectra Database, 2011. http://physics.nist.gov/asd

    Google Scholar 

  20. W. Demtroder, Laser Spectroscopy (Springer, Berlin, 1982).

    Google Scholar 

  21. M. D. Rumminger, D. Reinelt, V. Babushok, and G. T. Linteris, Combust. Flame 116, 207 (1999).

    Article  Google Scholar 

  22. A. N. Zaidel’, Atomic-Fluorescent Analysis (Khimiya, Leningrad, 1983).

    Google Scholar 

  23. A. V. Krestinin, V. N. Smirnov, and I. S. Zaslonko, Khim. Fiz. 9, 418 (1990).

    Google Scholar 

  24. S. A. Mitchell and P. A. Hackett, J. Chem. Phys. 93, 7822 (1990).

    Article  ADS  Google Scholar 

  25. R. J. Ryther and E. Weitz, J. Phys. Chem. 95, 9841 (1991).

    Article  Google Scholar 

  26. I. V. Spirina and V. P. Maslennikov, Usp. Khim. 63, 43 (1994).

    Article  Google Scholar 

  27. A. B. Callear and R. J. Oldman, Trans. Faraday Soc. 63, 2888 (1967).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Gurentsov.

Additional information

Original Russian Text © E.V. Gurentsov, A.V. Eremin, K.Yu. Priemchenko, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 9, pp. 98–107.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurentsov, E.V., Eremin, A.V. & Priemchenko, K.Y. Analysis of the production and clusterization of iron atoms under pulsed laser photolysis of Fe(CO)5 . Tech. Phys. 58, 1337–1345 (2013). https://doi.org/10.1134/S1063784213090144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213090144

Keywords

Navigation