Skip to main content
Log in

Exciton absorption of the GaAs semiconductor crystals under optical pumping to the conduction band

  • Solid State Electronics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Modifications of the exciton structure of the fundamental absorption edge in the GaAs crystals is experimentally studied at T = 1.7 K using the optical pumping at a photon energy that is significantly greater than the band gap. An increase in the amplitude of the fundamental state of the exciton is observed at a stable maximum energy. The dependence of the integral absorption on the pump intensity is interpreted in the framework of the concept of the excitonic polariton using the dissipative scattering of the exciton by free electrons that are generated by the pumping radiation. The constant of the electron-exciton interaction can be estimated with the aid of the solution to the inverse problem for initial pump levels. The integral absorption of the fundamental exciton state at liquid-helium temperatures can be used to characterize the purity of an epitaxial layer. The reasons for the lower saturation level of the integral absorption that is significantly less than the calculated level determined by the exciton oscillator strength need to be further studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. Yu. Aaviksoo, I. Ya. Reimand, V. V. Rossin, and V. V. Travnikov, Sov. Phys. Solid State 33, 2408 (1991); Phys. Solid State 36, 804 (1994).

    Google Scholar 

  2. Yu. V. Zhilyaev, G. R. Markaryan, V. V. Rossin, T. V. Rossina, and V. V. Travnikov, Sov. Phys. Solid State 28, 1506 (1986).

    Google Scholar 

  3. J. Aaviksoo, I. Reimand, V. V. Rossin, and V. V. Travnikov, Phys. Rev. B 45, 1473 (1992); S. O. Kognovitskii, V. V. Travnikov, Ya. Yu. Aaviksoo, and I. Ya. Reimand, Phys. Solid State 39, 907 (1997).

    Article  ADS  Google Scholar 

  4. L. Schultthies, J. Kuhl, A. Honold, and C. W. Tu, Phys. Rev. Lett. 57, 1635 (1986).

    Article  ADS  Google Scholar 

  5. A. C. Schaefer and D. G. Steel, Phys. Rev. Lett. 79, 4870 (1997).

    Article  ADS  Google Scholar 

  6. K. Aoki, Y. Okuyama, T. Kobayashi, and K. Yamamoto, J. Phys. C 12, 647 (1979).

    Article  ADS  Google Scholar 

  7. K. Aoki, T. Kinugasa, and K. Yamamoto, Phys. Lett. A 72, 63 (1979).

    Article  ADS  Google Scholar 

  8. S. G. Elcomoss and G. Munschy, J. Phys. Chem. Solids 40, 431 (1979).

    Article  ADS  Google Scholar 

  9. S. G. Elcomoss and G. Munschy, J. Phys. Chem. Solids 42, 1 (1981).

    Article  ADS  Google Scholar 

  10. N. K. Poletaev, Candidate’s Dissertation (Ioffe Physicotechnical Institute, St. Petersburg, 1999).

  11. R. P. Seisyan, Spectroscopy of Diamagnetic Excitons (Nauka, Moscow, 1984).

    Google Scholar 

  12. S. A. Markov, R. P. Seisyan, and V. A. Kosobukin, Semiconductors 38, 225 (2004).

    Article  ADS  Google Scholar 

  13. S. A. Vaganov and R. P. Seisyan, Tech. Phys. Lett. 38, 121 (2012).

    Article  ADS  Google Scholar 

  14. N. N. Akhmediev, Sov. Phys. JETP 52, 773 (1980).

    ADS  Google Scholar 

  15. V. A. Kosobukin, R. P. Seisyan, and S. A. Vaganov, Semicond. Sci. Technol. 8, 1235 (1993).

    Article  ADS  Google Scholar 

  16. G. N. Aliev, O. S. Koshchug, and R. P. Seisyan, Phys. Solid State 36, 203 (1994).

    ADS  Google Scholar 

  17. R. M. Datsiev, V. A. Kosobukin, N. V. Luk’yanova, R. P. Seisyan, and M. R. Vladimirova, Electrochemical Society Proceedings, Ed. by R. T. Williams and W. M. Yen Boston (Massachusetts, 1998), Vol. 98–25, pp. 228–233.

    Google Scholar 

  18. S. A. Vaganov and R. P. Seisyan, Tech. Phys. Lett. 39, 873 (2012).

    Article  ADS  Google Scholar 

  19. I. S. Gorban’, A. P. Krokhmal’, and Z. Z. Yanchuk, Phys. Solid State 42, 1625 (2000).

    Article  ADS  Google Scholar 

  20. S. A. Vaganov and R. P. Seisyan, Semiconductors 45, 103 (2011).

    Article  ADS  Google Scholar 

  21. R. P. Seisyan, V. A. Kosobukin, and M. S. Markosov, Semiconductors 40, 1287 (2006).

    Article  ADS  Google Scholar 

  22. S. Rudin, T. L. Reinecke, and B. Segall, Phys. Rev. B 42, 11218 (1990).

    Article  ADS  Google Scholar 

  23. G. N. Aliev, N. V. Luk’yanova, and R. P. Seisyan, Phys. Solid State 40, 800 (1998).

    Article  ADS  Google Scholar 

  24. G. N. Aliev, N. V. Lukyanova, R. P. Seisyan, M. R. Vladimirova, H. Hibbs, and G. Hitrova, Phys. Status Solidi A 164, 93 (1997).

    Article  Google Scholar 

  25. R. P. Seisyan, G. M. Savchenko, and N. S. Averkiev, Semiconductors 46, 873 (2012).

    Article  ADS  Google Scholar 

  26. S. Sonderegger, Magister thesis (EPFL-Ioffe Inst., Lausanne-SPb, 2003), supervisor R. Seisyan.

  27. M. S. Markosov and R. P. Seisyan, Semiconductors 43, 629 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Vaganov.

Additional information

Original Russian Text © S.A. Vaganov, D.A. Zaitsev, R.P. Seisyan, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 7, pp. 111–114.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vaganov, S.A., Zaitsev, D.A. & Seisyan, R.P. Exciton absorption of the GaAs semiconductor crystals under optical pumping to the conduction band. Tech. Phys. 58, 1039–1042 (2013). https://doi.org/10.1134/S1063784213070256

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213070256

Keywords

Navigation