Skip to main content
Log in

Vortex source flowing into vacuum under thermal crisis

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Thermal crisis of a stationary vortex source flowing to vacuum is considered for air on the basis of the model of a diatomic gas with variable heat capacities due to the excitation of vibrational degrees of freedom of molecules. The versions with different heat supply laws are compared. The effect of the size of the heat-release region (from close-to-zero value to that exceeding the minimal radius of the vortex source by tens of times) as well as the effect of the circulation of the flow on the critical parameters determining thermal crisis are considered. A qualitative difference from the thermal crisis in a perfect (ideal) gas with constant heat capacities is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Kogan and A. N. Kucherov, in Proceedings of the East-West High Speed Flow Field Conference (WEH-SFF-2007), Moscow, 2007, pp. 52–53.

  2. M. N. Kogan and A. N. Kucherov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 151 (2008).

    Google Scholar 

  3. M. N. Kogan and A. N. Kucherov, in Proceedings of the 8th International Workshop on Magneto-Plasma Aerodynamics, Moscow, 2009, pp. 168–179.

  4. M. N. Kogan and A. N. Kucherov, Teplofiz. Vys. Temp. 48(Suppl.), 85 (2010).

    Google Scholar 

  5. Yu. P. Raizer, Gas Discharge Physics (Nauka, Moscow, 1992; Springer, Berlin, 1991).

    Google Scholar 

  6. V. G. Gromov, A. P. Ershov, V. A. Levin, V. M. Shibkov, Teplofiz. Vys. Temp. 44, 185 (2006).

    Google Scholar 

  7. P. K. Tret’yakov, G. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tishchenko, and V. I. Yakovlev, Dokl. Phys. 41, 566 (1996).

    ADS  Google Scholar 

  8. V. Yu. Borzov, V. M. Mikhailov, I. V. Rybka, N. P. Savishchenko, and A. S. Yur’ev, Inzh.-Fiz. Zh. 66, 515 (1994).

    Google Scholar 

  9. V. N. Zudov, P. K. Tret’yakov, A. V. Tupikin, and V. I. Yakovlev, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 140 (2003).

    MATH  Google Scholar 

  10. P. Yu. Georgievskii and V. A. Levin, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 5, 154 (2003).

    Google Scholar 

  11. A. N. Kucherov, Tech. Phys. 54, 1755 (2009).

    Article  Google Scholar 

  12. G. N. Abramovich, Dokl. Akad. Nauk SSSR 54, 579 (1946).

    Google Scholar 

  13. L. A. Vulis, Dokl. Akad. Nauk SSSR 54, 669 (1946).

    Google Scholar 

  14. S. A. Chaplygin, About Gas Jets (Univer. Tipografiya, Moscow, 1902).

    Google Scholar 

  15. N. Ya. Fabrikant, Aerodynamics: General Course (Nauka, Moscow, 1964).

    Google Scholar 

  16. R. Mises, Mathematical Theory of Compressible Fluid Flow (Academic, New York, 1958; Inostrannaya Literatura, Moscow, 1961).

    MATH  Google Scholar 

  17. A. N. Kucherov, Uch. Zap. TsAGI 14, 47 (1983).

    ADS  Google Scholar 

  18. M. N. Kogan and A. N. Kucherov, in Proceedings of the 9th International Workshop on Magneto-Plasma Aerodynamics, Moscow, 2010, pp. 59–69.

  19. Aviation: Encyclopaedia, Ed. by G. P. Svishchev (Bol’shaya Ross. Entsiklopediya, Moscow, 1994).

    Google Scholar 

  20. A. N. Kucherov, Inzh.-Fiz. Zh. 83, 873 (2010).

    Google Scholar 

  21. A. N. Kucherov, Tech. Phys. 56, 936 (2011).

    Article  Google Scholar 

  22. A. N. Kucherov, TsAGI Science Journal 43(2), 175 (2012).

    Article  MathSciNet  Google Scholar 

  23. A. N. Kucherov, Tech. Phys. 57, 1479 (2012).

    Article  Google Scholar 

  24. A. N. Kucherov, J. Eng. Phys. Thermophys. 85, 1135 (2012).

    Article  Google Scholar 

  25. Yu. A. Glagolev, A Handbook of Physical Parameters of Atmosphere (Gidrometeorologicheskoe Izd., Leningrad, 1970).

    Google Scholar 

  26. Tables of Physical Data: Reference Book, Ed. by I. K. Kikoin (Atomizdat, Moscow, 1976).

    Google Scholar 

  27. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1976; Pergamon, Oxford, 1980).

    Google Scholar 

  28. V. Ts. Griffit, in Fundamental Data Obtained from Shock-Tube Experiments, Ed. by A. Ferri (Pergamon, Oxford, 1961; Gos. Izd. Lit. At. Nauke Tekhn., 1963).

  29. V. P. Agafonov, V. K. Vertushkin, A. A. Gladkov, and O. Yu. Polyanskii, Nonequilibrium Physical Chemical Processes in Aerodynamics, Ed. by G. I. Maikapar (Mashinostroenie, Moscow, 1972).

  30. “Air liquid and gaseous: density, enthalpy, entropy, and izobar heat capacity on temperature interval 70–1500 K and pressure interval 0.1–100 MPa,” GSSSD 8–79, in Properties of Materials and Matters. Air and Its Basic Components, Issue 2: Tables of Standard Reference Data (Gos. Kom. Upr. Kachest. Prod. Standartam, Moscow, 1991), pp. 19–34.

  31. A. N. Kucherov, RF Preprint No. 157, TsAGI (Moscow, 2009).

  32. A. N. Kucherov, RF Preprint No. 158, TsAGI (Moscow, 2010).

  33. R. B. Miles, G. L. Brown, W. R. Lempert, R. Yetter, G. J. Williams, Jr., S. M. Bogdonoff, D. Natelson, and J. R. Guest, AIAA J. 33, 1463 (1995).

    Article  ADS  Google Scholar 

  34. G. L. Brown, R. W. Anderson, A. E. Morgan, P. F. Barker, R. J. Lipinski, and R. B. Miles, in Proceedings of the 29th Plasmadynamics and Lasers Conference, Albuquerque, 1998, AIAA Pap. No. 98-2747.

  35. R. B. Miles and G. L. Brown, in Proceedings of the 29th Plasmadynamics and Lasers Conference, Albuquerque, 1998, AIAA Pap. No. 98-2748.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Kucherov.

Additional information

Original Russian Text © A.N. Kucherov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 7, pp. 30–37.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kucherov, A.N. Vortex source flowing into vacuum under thermal crisis. Tech. Phys. 58, 960–967 (2013). https://doi.org/10.1134/S1063784213070116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213070116

Keywords

Navigation