Skip to main content

Dependence of the type of fracture on temperature and strain rate

Abstract

A way to determine conditions for the viscous-brittle transition preceding the fracture of a solid is suggested. The viscous-brittle transition is viewed as the result of competition between different fracture mechanisms. The model suggested in this work is valid in wide ranges of strain rates and temperatures. The temperature and strain rate intervals within which brittle fracture is most probable are calculated for several materials.

This is a preview of subscription content, access via your institution.

References

  1. N. N. Davidenkov, Dynamic Testing of Materials (ONTI, Leningrad-Moscow, 1936).

    Google Scholar 

  2. N. N. Davidenkov, Zh. Tekh. Fiz. 9, 1051 (1939).

    Google Scholar 

  3. F. F. Vitman and V. A. Stepanov, Zh. Tekh. Fiz. 9, 1070 (1939).

    Google Scholar 

  4. A. F. Ioffe, Physics of Crystals (Gosizdat, Leningrad, 1929; University Microfilms, Ann Arbor, 1966).

    Google Scholar 

  5. A. P. Vashchenko and V. A. Makovei, Fiz.-Khim. Mekh. Mater. (L’vov) 28, 14 (1992).

    Google Scholar 

  6. G. V. Stepanov, Elastic-Plastic Deformation of Materials under Pulse Load (Naukova Dumka, Kiev, 1991).

    Google Scholar 

  7. G. I. Kanel’ and S. V. Razorenov, Phys. Solid State 43, 871 (2001).

    ADS  Article  Google Scholar 

  8. G. I. Kanel’, S. V. Razorenov, E. B. Zaretskii, L. Kherrman, and B. Maier, Phys. Solid State 45, 656 (2003).

    ADS  Article  Google Scholar 

  9. G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Medias (Yanus-K, Moscow, 1996).

    Google Scholar 

  10. V. Bratov, N. Morozov, and Y. Petrov, Dynamic Strength of Continuum (St. Petersb. Univ., St. Petersburg, 2009).

    Google Scholar 

  11. A. A. Gruzdkov, Yu. V. Petrov, and V. I. Smirnov, Phys. Solid State 44, 2080 (2002).

    ADS  Article  Google Scholar 

  12. A. A. Gruzdkov, E. V. Sitnikova, Y. V. Petrov, and N. F. Morozov, Math. Mech. Solid 14, 72 (2009).

    MathSciNet  MATH  Article  Google Scholar 

  13. Yu. V. Petrov, A. A. Gruzdkov, and E. V. Sitnikova, Dokl. Phys. 52, 691 (2007).

    ADS  MATH  Article  Google Scholar 

  14. Yu. V. Petrov and E. V. Sitnikova, Tech. Phys. 50, 1034 (2005).

    Article  Google Scholar 

  15. A. P. Vashchenko, V. P. Leonov, V. M. Tokarev, and A. S. Eglit, Probl. Prochn., No. 9, 17 (1991).

    Google Scholar 

  16. J. D. Campbell and W. G. Ferguson, Philos. Mag. 21, 63 (1970).

    ADS  Article  Google Scholar 

  17. G. V. Stepanov, Probl. Prochn., No. 6, 37 (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Evstifeev.

Additional information

Original Russian Text © A.D. Evstifeev, A.A. Gruzdkov, Yu.V. Petrov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 7, pp. 59–63.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Evstifeev, A.D., Gruzdkov, A.A. & Petrov, Y.V. Dependence of the type of fracture on temperature and strain rate. Tech. Phys. 58, 989–993 (2013). https://doi.org/10.1134/S1063784213070086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213070086

Keywords

  • Brittle Fracture
  • High Strain Rate
  • Ultimate Stress
  • Strain Rate Range
  • Strain Rate Dependence