Skip to main content
Log in

On the origin of nonequilibrium radiation from iodine molecules at the shock wave front

  • Gases and Liquids
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The direct simulation Monte Carlo (DSMC) method is used for modeling the problem on the shock wave front in the 0.7%I2-99.3%He mixture for a shock wave Mach number of 4.85. The choice of this system is due to the fact that intense radiation peaks have been observed experimentally precisely in such systems and it has been convincingly proven that this effect is induced by high-energy collisions between I2 molecules. The results of simulation provide additional sound arguments in favor of the conclusion that the translational nonequilibrium state at the shock wave front in a light gas with a small admixture of heavy nonreacting molecules may cause the experimentally observed nonequilibrium radiation peaks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Yu. Velikodnyi, A. V. Emeianov, and A. V. Eremin, Tech. Phys. 44, 1150 (1999).

    Article  Google Scholar 

  2. A. G. Gaydon and I. R. Hurle, Shock Tube in High-Temperature Chemical Physics (Chapman and Hall, London, 1963; Inostrannaya Literatura, Moscow, 1962).

    Google Scholar 

  3. Ya. B. Zel’dovich, A. P. Genich, and G. B. Manelis, Sov. Phys. Dokl. 24, 756 (1979).

    ADS  Google Scholar 

  4. S. V. Kulikov, Izv. Ross. Akad. Nauk, Mekh. Zhidk. Gaza, No. 4, 173 (1997).

    Google Scholar 

  5. S. V. Kulikov, Shock Waves 7, 25 (1997).

    Article  ADS  MATH  Google Scholar 

  6. S. V. Kulikov and G. B. Manelis, Dokl. Chem. 382, 29 (2002).

    Article  Google Scholar 

  7. A. P. Genich, S. V. Kulikov, G. B. Manelis, and S. L. Chereshnev, Sov. Technol. Rev. B Therm Phys. 4, 1 (1992).

    Google Scholar 

  8. U. S. Akhmadov, I. S. Zaslonko, and V. N. Smirnov, Khim. Fiz. 8, 1400 (1989).

    Google Scholar 

  9. P. V. Kozlov, S. A. Losev, and Yu. V. Romanenko, Tech. Phys. Lett. 26, 1013 (2000).

    Article  ADS  Google Scholar 

  10. O. G. Divakov, A. V. Eremin, V. S. Ziborov, and V. E. Fortov, Dokl. Chem. 373(4), 141 (2000).

    Google Scholar 

  11. A. V. Drakon, A. V. Emelianov, and A. V. Eremin, Tech. Phys. 53, 1022 (2008).

    Article  Google Scholar 

  12. A. V. Drakon, A. V. Emelianov, and A. V. Eremin, J. Phys. D: Appl. Phys. 41, 135201 (2008).

    Article  ADS  Google Scholar 

  13. A. V. Drakon, A. V. Eremin, S. V. Kulikov, and V. E. Fortov, Dokl. Phys. 56, 207 (2010).

    Article  ADS  Google Scholar 

  14. A. P. Genich, S. V. Kulikov, G. B. Manelis, et al., Zh. Vychisl. Mat. Mat. Fiz. 26, 1839 (1986).

    MathSciNet  Google Scholar 

  15. V. V. Struminskii and V. Yu. Velikodnyi, Dokl. Akad. Nauk 226(1), 28 (1982).

    ADS  Google Scholar 

  16. G. A. Bird, Molecular Gas Dynamics (Clarendon, Oxford, 1976; Mir, Moscow, 1981).

    Google Scholar 

  17. T. V. Bazhenova, A. V. Emelianov, A. V. Eremin, and V. Y. Velicodny, in Proceedings of the 21st International Symposium on Shock Waves (ISSW21), Great Keppel, Australia, 1998, p. 195.

  18. V. D. Kosynkin and N. A. Genelov, Fiz. Goreniya Vzryva, No. 4, 62 (1966).

    Google Scholar 

  19. S. V. Kulikov and P. K. Berzigiyarov, Vychisl. Metody Progr. 3, 51 (2002).

    Google Scholar 

  20. S. V. Kulikov, A. L. Smirnov, and O. N. Ternovaya, Khim. Fiz. 19(12), 53 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Kulikov.

Additional information

Original Russian Text © A.V. Emelianov, A.V. Eremin, S.V. Kulikov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 5, pp. 24–29.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Emelianov, A.V., Eremin, A.V. & Kulikov, S.V. On the origin of nonequilibrium radiation from iodine molecules at the shock wave front. Tech. Phys. 58, 647–652 (2013). https://doi.org/10.1134/S1063784213050071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213050071

Keywords

Navigation