Skip to main content
Log in

Giant antiresonance in electromagnetic wave reflection from a 3D structure with ferrite spinel nanoparticles

  • Radiophysics
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

We analyze the microwave properties of nanocomposite materials obtained by embedding opal matrices (regular packing of SiO2 spheres about 250 nm in diameter) of ferrite spinel nanoparticles in the interspherical space. It is found that the main reason for microwave changes is the magnetic resonance in a nanocomposite. In addition to the resonance, antiresonance also takes place, which is manifested as a minimum of absorbed power at frequencies higher than a certain frequency characteristic of the given type of ferrite particles. Antiresonance appears in the fields smaller than the resonance field. The amplitude of the reflected signal in antiresonance increases fourfold. The measurements are taken in the frequency range from 26 to 38 GHz. The change in the moduli of transmission and reflection coefficients in the external magnetic field in a rectangular waveguide containing a nanocomposite is analyzed. The modulus of the wave transmittance through a rectangular resonator with a nanocomposite specimen is measured. The structural analysis of nanocomposites is carried out. In addition, the magnetization curves and hysteresis loops are measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Photonic Glasses, Ed. by Fuxi Gan and Lei Xu (Imperial College, 2006).

    Google Scholar 

  2. A. Efros, Shi Jing, S. Blair, M. DeLong, and Z. V. Vardeny, in Proceedings of the NSF Nanoscale Science and Engineering Grantees Conference, Arlington, 2002, p. 0102964.

  3. R. M. Cole, Y. Sugawara, J. J. Baumberg, S. Mahajan, M. Abdelsalam, and P. N. Bartlett, Phys. Rev. Lett. 97, 137401 (2006).

    Article  ADS  Google Scholar 

  4. E. V. Astrova, T. N. Borovinskaya, V. A. Tolmachev, and T. S. Perova, Semicondructors 38, 1084 (2004).

    Article  ADS  Google Scholar 

  5. L. Spinu, H. Srikanth, E. E. Carpenter, and C. J. O’Connor, J. Appl. Phys. 87, 5490 (2000).

    Article  ADS  Google Scholar 

  6. Lai Zhenyu, Xu Guangliang, and Zheng Yalin, Nanoscale Res. Lett. 2, 40 (2007).

    Article  ADS  Google Scholar 

  7. Nutan Gupta, A. Verma, Subhash C. Kashyap, and D. C. Dube, J. Magn. Magn. Mater. 308, 137 (2007).

    Article  ADS  Google Scholar 

  8. C. R. Alves, R. Aquino, J. Depeyrot, F. A. Tourinho, E. Dubois, and R. Perzynski, J. Mater. Sci. 42, 2297 (2007).

    Article  ADS  Google Scholar 

  9. Hua Su, Huaiwu Zhang, Xiaoli Tang, and Yingli Liu, J. Mater. Sci. 42, 2849 (2007).

    Article  ADS  Google Scholar 

  10. Yao Li, Jiupeng Zhao, and Jiecai Han, Bull. Mater. Sci. 25, 263 (2002).

    Article  MATH  Google Scholar 

  11. A. G. Gurevich and G. A. Melkov, Magnetization Oscillations and Waves (Fizmatlit, Moscow, 1994; CRC, Boca Raton, 1996).

    Google Scholar 

  12. N. A. Semenov, Technical Electrodynamics (Svyaz’, Moscow, 1973).

    Google Scholar 

  13. I. B. Lebedev, Microwave Techniques and Devices (Vysshaya Shkola, Moscow, 1972), Vol. 1.

    Google Scholar 

  14. V. V. Ustinov, A. B. Rinkevich, L. N. Romashev, and E. A. Kuznetsov, Tech. Phys. Lett. 33, 771 (2007).

    Article  ADS  Google Scholar 

  15. M. I. Samoilovich, A. F. Belyanin, N. I. Yurasov, S. M. Kleshcheva, M. Yu. Tsvetkov, E. A. Gan’shina, N. S. Perov, S. S. Agafonov, V. P. Glazkov, V. A. Sanenkov, and V. M. Cherepanov, “Metallomagnetic Dielectric Nanocomposite Based on Opal Matrixese,” in Proceedings of the 12th International Scientific Technical Conference on High Technology in Russian Industry: Materials and Devices of Functional Electronics and Microphotonics, Moscow, 2006, pp. 32–39.

  16. Yu. M. Yakovlev and S. Sh. Gendelev, Ferrite Monocrystals in Radioelectronics (Sov. Radio, Moscow, 1975).

    Google Scholar 

  17. A. G. Gurevich, Magnetic Resonance in Ferrites and Antiferromagnetics (Nauka, Moscow, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. B. Rinkevich or M. I. Samoylovich.

Additional information

Original Russian Text © V.V. Ustinov, A.B. Rinkevich, D.V. Perov, A.M. Burkhanov, M.I. Samoylovich, S.M. Kleshcheva, E.A. Kuznetsov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 4, pp. 104–112.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustinov, V.V., Rinkevich, A.B., Perov, D.V. et al. Giant antiresonance in electromagnetic wave reflection from a 3D structure with ferrite spinel nanoparticles. Tech. Phys. 58, 568–577 (2013). https://doi.org/10.1134/S1063784213040257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213040257

Keywords

Navigation