Skip to main content
Log in

Fracture of polystyrene- and molecular silica sol-based nanocomposites during fast compression

  • Material Science
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Polystyrene-based composites containing hybrid molecular silica sol nanoparticles with a core-shell structure are studied during fast compression. Polystyrene and the related composites are found to fail instantaneously at a certain critical pressure, which is accompanied by the emission of electromagnetic and acoustic waves. The composite composition changes the critical pressure during explosion and the frequency characteristics of the generated electromagnetic and acoustic waves. The charge density transfer mechanism in a composite with a filler concentration higher than 10 wt % is shown to differ from that in composites with a lower filler content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Boldyrev, Usp. Khim. 75, 203 (2006).

    Article  Google Scholar 

  2. M. A. Yaroslavsky, Rheological Explosion (Nauka, Moscow, 1982).

    Google Scholar 

  3. N. S. Enikolopyan, Usp. Khim. 60, 586 (1991).

    Google Scholar 

  4. A. I. Aleksandrov, I. A. Aleksandrov, A. I. Prokof’ev, and N. N. Bubnov, Izv. Ross. Akad. Nauk, Ser. Khim., No. 9, 1621 (1999).

  5. A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. D. Myakushev, M. A. Obrezkova, O. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, Vysokomol. Soedin. 53, 1217 (2011).

    Google Scholar 

  6. V. V. Kazakova, A. N. Ozerin, A. M. Muzafarov, S. J. Clarson, J. J. Fitzgerald, and M. J. Owen, Silicones and Silicone-Modified Materials (Am. Chem. Soc., Washington, 2000), pp. 503–515.

    Book  Google Scholar 

  7. I. A. Aleksandrov, O. T. Gritsenko, E. V. Getmanova, E. S. Obolonkova, O. A. Serenko, V. G. Shevchenko, A. I. Aleksandrov, and A. M. Muzafarov, Tech. Phys. 56, 491 (2011).

    Article  Google Scholar 

  8. N. V. Voronina, I. B. Meshkov, V. D. Myakushev, N. V. Demchenko, T. V. Laptinskaya, and A. M. Muzafarov, Ross. Nanotekhnol. 3(5-6), 78 (2008).

    Google Scholar 

  9. A. V. Bystrova, N. V. Voronina, N. V. Gaevoi, E. V. Getmanova, I. B. Meshkov, O. B. Gorbatsevich, A. M. Muzafarov, A. N. Ozerin, E. V. Egorova, and E. A. Tatarinova, Ross. Nanotekhnol. 3(5–6), 42 (2008).

    Google Scholar 

  10. N. V. Voronina, I. B. Meshkov, V. D. Myakushev, N. V. Demchenko, T. V. Laptinskaya, and A. M. Muzafarov, Ross. Nanotekhnol. 3(5–6), 77 (2008).

    Google Scholar 

  11. F. Mirzoev, Tech. Phys. 47, 1258 (2002).

    Article  Google Scholar 

  12. A. S. Bakai, S. A. Bakai, I. M. Mikhailovskii, I. M. Neklyudov, P. I. Stoev, and M.-P. Makht, JETP Lett. 76, 218 (2000).

    Article  ADS  Google Scholar 

  13. L. R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing (Prentice-Hall, Englewood Cliffs, 1975; Mir, Moscow, 1978).

    Google Scholar 

  14. S. H. Wu, Polymer 26, 1855 (1985).

    Article  Google Scholar 

  15. B. J. Ash, R. W. Siegel, and L. S. Schadler, J. Polym. Sci., Part B: Polym. Phys. 42, 4371 (2004).

    Article  ADS  Google Scholar 

  16. K. J. Lee, D. K. Lee, Y. W. Kim, W.-S. Choe, and G. H. Kim, J. Polym. Sci., Part B: Polym. Phys. 45, 2232 (2007).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Serenko.

Additional information

Original Russian Text © I.A. Aleksandrov, O.T. Gritsenko, N.S. Perov, E.V. Getmanova, E.S. Obolonkova, O.A. Serenko, V.G. Shevchenko, A.I. Aleksandrov, A.M. Muzafarov, 2013, published in Zhurnal Tekhnicheskoi Fiziki, 2013, Vol. 83, No. 1, pp. 93–98.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrov, I.A., Gritsenko, O.T., Perov, N.S. et al. Fracture of polystyrene- and molecular silica sol-based nanocomposites during fast compression. Tech. Phys. 58, 88–93 (2013). https://doi.org/10.1134/S1063784213010027

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784213010027

Keywords

Navigation