Skip to main content
Log in

Pulsed electric discharges in water as a source of magnetic nanoparticles for transportation of microorganisms

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The distinguishing property of magnetic nanoparticles that determines the increasing interest in these objects is their mobility under the action of a magnetic field, which can be used for their directional transportation, deposition, and concentration in a preset region. It is shown that nanoparticles consisting of iron oxide can be used as magnetoactive agents for converting the cells of microorganisms into microaggregates for their directional transportation or concentration in liquid media under the action of a magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Q. A. Pankhurst, J. Connolly, S. K. Jones, and J. Dobson, J. Phys. D: Appl. Phys. 36, 167 (2003).

    Article  ADS  Google Scholar 

  2. O. V. Salata, J. Nanobiotechnology 2, 3 (2004).

    Article  Google Scholar 

  3. H. Gu, K. Xu, C. Xu, et al., Chem. Commun., No. 9, 941 (2006).

  4. D. Weller and A. Moser, IEEE Trans. Magn. 35, 4423 (1999).

    Article  ADS  Google Scholar 

  5. C. Berry and A. Curtis, J. Phys. D: Appl. Phys. 36, 198 (2003).

    Article  ADS  Google Scholar 

  6. A.-H. Lu, E. L. Salabas, F. Schuth, Angew. Chem. Int. Ed. Engl. 46, 1222 (2007).

    Article  Google Scholar 

  7. C. Lang and D. Schuler, J. Phys.: Condens. Matter 18, 2815 (2006).

    Article  ADS  Google Scholar 

  8. J. Hong, P. Gong, D. Xu, et al., J. Biotechnology 128, 597 (2007).

    Article  Google Scholar 

  9. V. A. Kolikov, V. E. Kurochkin, L. K. Panina, A. F. Rutberg, F. G. Rutberg, V. N. Snetov, and A. Yu. Stogov, Tech. Phys. 52, 263 (2007).

    Article  Google Scholar 

  10. E. V. Bogomolova, V. L. Goryachev, V. A. Kolikov, A. I. Kulishevich, V. E. Kurochkin, L. K. Panina, F. G. Rutberg, and F. G. Yulaev, in Proceedings of the 1st All-Russia Congress on Medical Mycology, Moscow, 2003, Vol. 1, p. 90.

  11. E. V. Bogomolova, V. L. Goryachev, V. A. Kolikov, A. I. Kulishevich, V. E. Kurochkin, L. K. Panina, F. G. Rutberg, and F. G. Yulaev, Mikologiya Fitopa- tologiya 37(5), 19 (2003).

    Google Scholar 

  12. P. Kh. Rutberg, V. A. Kolikov, V. E. Kurochkin, L. K. Panina, and A. Ph. Rutberg, IEEE Trans. Plasma Sci. 35, 1111 (2007).

    Article  ADS  MATH  Google Scholar 

  13. Ph. G. Rutberg, V. L. Gorjachev, V. A. Kolikov, V. N. Snetov, and A. Yu. Stogov, High Temp. Mater. Proc. 14, 167 (2010).

    Google Scholar 

  14. W. Tan, K. Wang, X. He, et al., Med. Res. Rev. 24, 621 (2004).

    Article  Google Scholar 

  15. V. I. Shubayev and R. Thomas, Adv. Drug Del. Rev. 61, 467 (2009).

    Article  Google Scholar 

  16. X. X. He, K. Wang, W. Tan, et al., J. Am. Chem. Soc. 125, 7168 (2003).

    Article  Google Scholar 

  17. M.-H. Liao and D.-H. Chen, Biotechnol. Lett. 23, 1723 (2001).

    Article  Google Scholar 

  18. I. M. Kirko and G. E. Kirko, Magnetohydrodynamics: Modern Vision of Problem (NITs “Regul. Khaot. Din.”-Izhevskii Inst. Komp’yut.-Issled., Moscow-Izhevsk, 2009).

    Google Scholar 

  19. S. I. Syrovatskii, Sov. Phys. Usp. 17, 153 (1957).

    Google Scholar 

  20. M. I. Shliomis, Sov. Phys. Usp. 17, 153 (1974).

    Article  ADS  Google Scholar 

  21. G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Univ., Cambridge, 1967; Mir, Moscow, 1973; NITs “Regul. Khaot. Din.,” 2004).

    MATH  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Fizmatlit, Moscow, 2001; Pergamon, New York, 1987).

    Google Scholar 

  23. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Fizmatlit, Moscow, 2005; Pergamon, New York, 1984).

    Google Scholar 

  24. Yu. A. Nevskii and A. N. Osiptsov, Tech. Phys. Lett. 35, 340 (2009).

    Article  ADS  Google Scholar 

  25. R. I. Nigmatulin, Dynemics of MultiPhase Media (Nauka, Moscow, 1987; Taylor&Francis, London, 1990), Vol. 1.

    Google Scholar 

  26. L. I. Sedov, Mechanics of Continuous Media (Nauka, Moscow, 1976; World Scientific, 1996).

    Google Scholar 

  27. S. A. Gudoshnikov, B. Ya. Lyubimov, V. S. Skomarovskii, N. A. Usov, Yu. G. Yanovskii, and A. N. Danilin, http://rusnanotech08.rusnanoforum/ru/sadm_files/disk/Docs/2/10/10%20(44).pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. A. Kolikov.

Additional information

Original Russian Text © F.G. Rutberg, V.A. Kolikov, V.N. Snetov, A.Yu. Stogov, E.G. Abramov, E.V. Bogomolova, L.K. Panina, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 12, pp. 52–57.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rutberg, F.G., Kolikov, V.A., Snetov, V.N. et al. Pulsed electric discharges in water as a source of magnetic nanoparticles for transportation of microorganisms. Tech. Phys. 57, 1661–1666 (2012). https://doi.org/10.1134/S1063784212120249

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212120249

Keywords

Navigation