Skip to main content
Log in

On the possibility of natural formation of a transverse wave with a phase velocity lower than the velocity of light

  • Gas Discharges, Plasma
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The formation of a transverse wave with a phase velocity lower than the velocity of light, which can exist in an equilibrium plasma without a slow-wave structure in zero magnetic field, is described. It involves the transformation of a transverse wave with trapped electrons, traveling along the magnetic field, into a slow transverse wave after the removal of the magnetic field. During the evolution of the wave with trapped electrons, the magnetic induction decreases very slowly in the direction of the wave propagation. As a result, the velocity at which electrons are in resonant interaction with the wave increases; therefore, the electrons fall to the bottom of potential wells. Under the influence of the trapped electrons, the phase velocity of the wave decreases and becomes lower than the velocity of light. It becomes equal to the velocity at which the electrons are in resonance interaction with the wave at the instant when the magnetic field vanishes. It is demonstrated that a transverse wave with a velocity lower than the velocity of light can exist in an equilibrium plasma even after the magnetic field vanishes; in this case, the flow of trapped electrons serves as a slow-wave structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. I. Akhiezer, I. A. Akhiezer, and R. V. Polovin, Plasma Electrodynamics (Nauka, Moscow, 1974; Pergamon Press, Oxford, 1975), p. 208.

    Google Scholar 

  2. V. Ya. Davydovskii, V. G. Sapogin, and A. S. Ukolov, Sov. Phys. Tech. Phys. 25, 673 (1980).

    Google Scholar 

  3. V. Ya. Davydovskii and A. I. Matveev, Sov. J. Plasma Phys. 13, 251 (1987).

    Google Scholar 

  4. A. I. Matveev, Plasma Phys. Rep. 35, 315 (2009).

    Article  ADS  Google Scholar 

  5. V. L. Krasovsky, Phys. Lett. A 374, 1751 (2010).

    Article  ADS  MATH  Google Scholar 

  6. Ya. I. Istomin and V. I. Kapman, Sov. Phys. JETP 36, 69 (1972).

    ADS  Google Scholar 

  7. A. I. Matveev, Sov. Phys. Tech. Phys. 28, 2104 (1983).

    Google Scholar 

  8. V. L. Krasovsky and H. Matsumoto, Phys. Plasmas 5, 2210 (1998).

    Article  ADS  Google Scholar 

  9. V. L. Krasovsky, J. Atmos. Sol.-Terr. Phys. 69, 969 (2007).

    Article  ADS  Google Scholar 

  10. R. F. Lutomirski and R. N. Sudan, Phys. Rev. 147, 1565 (1966).

    Article  Google Scholar 

  11. C. S. Roberts and S. J. Buchsbaum, Phys. Rev. A 135, 381 (1964).

    MathSciNet  ADS  Google Scholar 

  12. L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields (Nauka, Moscow, 1967; Pergamon, Oxford, 1975).

    Google Scholar 

  13. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 1: Mechanics (Nauka, Moscow, 1965; Pergamon, New York, 1988).

    Google Scholar 

  14. D. R. Shklyar and H. Matsumoto, Surv. Geophys. 30, 55 (2009).

    Article  ADS  Google Scholar 

  15. G. M. Zaslavskii and R. Z. Sagdeev, Introduction to Nonlinear Physics (Nauka, Moscow, 1988), p. 28.

    MATH  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

    Google Scholar 

  17. Ya. I. Istomin, V. I. Kapman, and D. R. Shklyar, Zh. Eksp. Teor. Fiz. 64, 2073 (1973).

    Google Scholar 

  18. A. S. Bakai and Yu. P. Stepanovski, Adiabatic Invariants (Naukova Dumka, Kiev, 1981).

    Google Scholar 

  19. V. E. Goland, A. P. Zhilinskii, and I. E. Sakharov, Foundations of Plasma Physics (Atomizdat, Moscow, 1977), pp. 43–45.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Matveev.

Additional information

Original Russian Text © A.I. Matveev, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 12, pp. 37–46.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matveev, A.I. On the possibility of natural formation of a transverse wave with a phase velocity lower than the velocity of light. Tech. Phys. 57, 1646–1655 (2012). https://doi.org/10.1134/S1063784212120195

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212120195

Keywords

Navigation