Skip to main content
Log in

Setup for studying nonlinear magnetic properties of high-temperature superconductors with the aid of magnetization harmonics

  • Experimental Instruments and Technique
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

A setup for measuring cophasal and quadrature components of higher harmonics of an electromotive-force signal of the response of a high-temperature superconductor makes it possible to study nonlinear magnetic properties of superconductors in variable magnetic fields of up to 1 kOe and constant magnetic fields of up to 10 T in the temperature range of 5–300 K. This setup was used to measure the temperature dependences of the absolute values of the real and imaginary parts of the first and third harmonics of the magnetization of textured Yba2Cu3O7 − x polycrystalline samples in the temperature range of 77–220 K at various values of variable and constant magnetic fields. An analysis of resulting data made it possible to reveal the presence of different dynamical modes of the magnetic flux in YBa2Cu3O7 − x that were dominant in different temperature ranges. The nonlinearity of the magnetization of YBa2Cu3O7 − x (the appearance of higher harmonics) was observed up to temperatures in the range of T = 103–112 K, which were substantially higher than the temperature of the transition of this compound to a superconducting state. The observed feature in the magnetization of YBa2Cu3O7 − x was associated with the emergence of a pseudogap state in this compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. P. Bean, Rev. Mod. Phys. 36, 31 (1964).

    Article  ADS  Google Scholar 

  2. P. W. Anderson, Phys. Rev. Lett. 9, 309 (1962).

    Article  ADS  Google Scholar 

  3. C. Ebner and D. Stroud, Phys. Rev. B 31, 165 (1987).

    Article  ADS  Google Scholar 

  4. I. Morgenstern, K. A. Muller, and J. C. Bednordz, Physica C 15, 59 (1988).

    Article  ADS  Google Scholar 

  5. E. V. Sonin, JETP Lett. 47 1791 (1988).

    Google Scholar 

  6. M. Polichetti, M. G. Adesso, and S. Pace, Physica A 339, 119 (2004).

    Article  ADS  Google Scholar 

  7. K. Schindler, M. Ziese, P. Esguinazi, et al., Physica C 417, 141 (2005).

    Article  ADS  Google Scholar 

  8. N. D. Kuz’michev, V. V. Slavkin, and E. A. Tishchenko, in Proceedings of the 7th All-Russian Scientific-Practical Conference on Machine Building: Science, Technics, Education, Ruzaevsk. Inst. Mashinostroen., Mordovskii Gos. Univ., 2009, p. 137.

  9. D. N. Bacov and T. Timusk, Rev. Mod. Phys. 77, 721 (2005).

    Article  ADS  Google Scholar 

  10. P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006).

    Article  ADS  Google Scholar 

  11. O. Fischer, M. Kugler, I. Maggio-Aprile, and Berthod, Rev. Mod. Phys. 79, 353 (2007).

    Article  ADS  Google Scholar 

  12. V. I. Belyavskii and Yu. V. Kopaev, Phys. Usp. 47, 409 (2004).

    Article  ADS  Google Scholar 

  13. M. P. Trunin, Phys. Usp. 48, 979 (2005).

    Article  Google Scholar 

  14. M. V. Sadovskii, Phys. Usp. 44, 515 (2001).

    Article  ADS  Google Scholar 

  15. A. I. Golovashkin, N. D. Kuz’michev, and V. V. Slavkin, JETP 107, 581 (2008).

    Article  ADS  Google Scholar 

  16. V. V. Slavkin and E. A. Tishchenko, Fiz. Met. Metalloved. 107(4), 1 (2009).

    Google Scholar 

  17. N. D. Kuz’michev and V. V. Slavkin, Phys. Solid State 49, 1623 (2007).

    Article  ADS  Google Scholar 

  18. A. I. Golovashkin, N. D. Kuz’michev, I. S. Levchenko, et al., Phys. Solid State 31, 679 (1989).

    Google Scholar 

  19. A. I. Golovashkin, N. D. Kuz’michev, I. S. Levchenko, et al., Phys. Solid State 32, 802 (1990).

    Google Scholar 

  20. N. D. Kuz’michev, Tech. Phys. 39, 1236 (1994).

    Google Scholar 

  21. N. D. Kuz’michev and V. V. Slavkin, Physica C 235–240, 2875 (1994).

    Article  Google Scholar 

  22. T. Ishida and R. B. Goldfard, Phys. Rev. B 41, 8937 (1990).

    Article  ADS  Google Scholar 

  23. P. Fabbricatore, S. Farinon, G. Gemme, et al., Phys. Rev. B 50, 3189 (1994).

    Article  ADS  Google Scholar 

  24. Y. Ge, S. Y. Ding, Q. Ding, et al., Physica C 292, 59 (1997).

    Article  ADS  Google Scholar 

  25. D. Di. Gioacchino, F. Celani, P. Tripodi, et al., Phys. Rev. B 59, 11539 (1999).

    Article  ADS  Google Scholar 

  26. R. Griessen, Wen Hai-hu, J. J. van Dalen, et al., Phys. Rev. Lett. 72, 1910 (1994).

    Article  ADS  Google Scholar 

  27. G. Blatter, M. V. Feigelman, V. B. Geshkenbein, et al., Rev. Mod. Phys. 66, 1125 (1994).

    Article  ADS  Google Scholar 

  28. T. Ito, K. Takenaka, and S. Uchida, Phys. Rev. Lett. 70, 3995 (1993).

    Article  ADS  Google Scholar 

  29. D. D. Prokof’ev, M. P. Volkov, and Yu. A. Boikov, Phys. Solid State 45, 1223 (2003).

    Article  ADS  Google Scholar 

  30. C. C. Homes, T. Timusk, R. Liang, et al., Phys. Rev. Lett. 71, 1645 (1993).

    Article  ADS  Google Scholar 

  31. A. V. Mitin, G. M. Kuz’micheva, V. V. Murashov, et al., JETP 80, 1075 (1995).

    ADS  Google Scholar 

  32. G. Panagopoulos, M. Majoros, T. Nishizaki, and H. Iwasaki, Phys. Rev. Lett. 96, 047002 (2006).

    Article  ADS  Google Scholar 

  33. C. Panagopoulos, M. Majoros, T. Nishizaki, and A. P. Petrovic, Phys. Rev. B. 69, 144508 (2004).

    Article  ADS  Google Scholar 

  34. M. Majoros, et al., Phys. Rev. 72, 024528 (2005).

    Article  ADS  Google Scholar 

  35. Y. Wang, L. Li, J. Naughton, et al., Phys. Rev. Lett. 95, 247002 (2005).

    Article  ADS  Google Scholar 

  36. S. A. Kivelson, I. P. Bindloss, E. Fradkin, et al., Rev. Mod. Phys. 75, 1201 (2003).

    Article  ADS  Google Scholar 

  37. Z. A. Xu, et al., Nature 406, 486 (2000).

    Article  ADS  Google Scholar 

  38. Y. Wang, et al., Science 299, 86 (2003).

    Article  ADS  Google Scholar 

  39. Y. Wang, L. Li, and N. P. Ong, Phys. Rev. B 73, 024510 (2006).

    Article  ADS  Google Scholar 

  40. V. I. Belyavskii, Yu. V. Kopaev, and M. Yu. Smirnov, JETP 101, 452 (2005).

    Article  ADS  Google Scholar 

  41. V. M. Krasnov, A. E. Kovalev, A. Yurgens, and D. Winkler, Phys. Rev. Lett. 86, 2657 (2001).

    Article  ADS  Google Scholar 

  42. P. Pieri, G. C. Strinati, and D. Moroni, Phys. Rev. Lett. 89, 127003 (2002).

    Article  ADS  Google Scholar 

  43. A. I. Golovashkin, A. N. Zherikhin, L. N. Zherikhina, G. V. Kuleshova, and A. M. Tskhovrebov, JETP 99, 370 (2004).

    Article  ADS  Google Scholar 

  44. A. I. Golovashkin, A. M. Tskhovrebov, N. D. Kuz’michev, and V. V. Slavkin, in Proceedings of the 2nd International Conference on Fundamental Problems of High-Temperature Superconductivity (FPS-06), FIAN, Moscow, 2006, p. 170.

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Slavkin, E.A. Tishchenko, 2012, published in Zhurnal Tekhnicheskoi Fiziki, 2012, Vol. 82, No. 10, pp. 117–123.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slavkin, V.V., Tishchenko, E.A. Setup for studying nonlinear magnetic properties of high-temperature superconductors with the aid of magnetization harmonics. Tech. Phys. 57, 1438–1444 (2012). https://doi.org/10.1134/S1063784212100210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784212100210

Keywords

Navigation